실내 공기질 관리의 중요성이 대두되면서 쾌적한 실내환경에 도움을 주는 공기청정 기능과 습도 조절 기능을 동시에 갖춘 제습기와 공기청정기가 각광받고 있다. 하지만 오랜 기간 동안 공기정화제품을 사용하게 될 시에는 필터가 오염되어 본연의 기능을 상실하게 되는 것으로 알려져 있지만 이에 대한 구체적인 연구나 보고는 드문 편이다. 이에 본 연구에서는 가정과 사무실 등에서 사용한 공기정화제품을 수거하여 주요 부위별 미생물 오염도 및 주요 오염 미생물들을 분석하였다. 그 결과, 4 종류의 공기정화제품에서 오염도가 높은 부위는 필터부위, 물이 직접 닿는 부위 및 공기가 외부로부터 직접적으로 들어오는 입구부위 등에서 미생물학적 오염도가 가장 높았다. 하지만 공기정화제품은 사용하는 환경과 조건에 따라서 미생물학적 오염도 및 오염 미생물의 성상은 각각 다르게 나타났다. 하지만 이들 공기정화제품들에는 공통적으로 Staphylococcus sp., Micrococcus sp. 그리고 Bacillus sp.의 세균과 Cladosporium sp. 및 Penicillium sp.의 진균이 공통적으로 오염되어 있는 우점종인 것으로 분석되었다.
In this study, using soil brick with combined effective microorganisms and emergent plants was identified which it can increase the effect of conservation and improvement of water. Lab-test was consist of four kind of reactors and each of reactors were A(rawwater), B(soil brick), C(emergent plant) and D(soil brick+emergent plant). Iris pseudoacorus, Phargmites australis, Typha angustifolia and Zizania latifolia were used for emergent plant. Evaluation of application on various environment were performed on agricultural waterway and pond. The pH measurement test of soil brick was performed due to evaluate whether a strong alkaline water flows out of the soil brick. Result of lab-test, removal efficiency of D was better than removal efficiency of A presenting 20.9%, 27.9% 21.5%, 33.8% and 58.4% for CODCr, BOD5, TN, TP and TSS respectively. Removal efficiency of soil brick on agricultural waterway was revealed to be 49.5%, 45.0%, 43.7%, 37.3% and 28.6% for CODCr, BOD5, TN, TP and TSS respectively. And removal efficiency of soil brick on the pond was revealed to be 12.7%, 10.5%, 9.32%, 10.4% and 36.3% for CODCr, BOD5, TN, TP and TSS respectively. Result of pH measurement test of soil brick was neutral which was about 6 to 8.
For the biological treatment of industrial wastewater containing high concentration of phenol, isolation and characterization of phenol - degrading bacterium were carried out. A bacterial strain P2 capable of degrading phenol was isolated from contaminate
중금속으로 오염된 토양과 광미는 지하수 및 생태계에 추가적으로 피해를 발생시킨다. 이러한 독성 금속의 축적은 식물의 성장억제 및 인체의 발달이상, 발암과 같은 다양한 질병의 원인이 된다. 오염된 토양에서 중금속을 정화하는 방법으로는 고형화/안정화, 토양세척, 토양경작법 등과 같이 다양한 방법이 있다. 하지만 부지 및 오염특성에 따라 적절한 방법을 사용해야 한다. 적절한 방법 중 하나는 오염된 토양의 고형화/안정화이다. 본 연구의 목적은 오염된 토양 및 광미 내 존재하고 있는 중금속을 고형화/안정화 공법을 적용하여 정화하는 방법을 제안하는데 있다. 본 연구에서는 오염토양 내 중금속을 고형화/안정화 시키고 강도 증진을 위해 MICP 토착미생물과 산업폐기물인 굴패각, 폐석고를 배합하여 고화제로 사용하였다. 국내의 중금속 오염토양과 광미에서 MICP 토착미생물을 분리하였고 균체 지방산 분석을 통하여 동정을 진행하였다. 각각의 시료에서 분리한 균주를 동정한 결과 가장 많이 유사성을 보이는 균주는 Brevibacillus centrosporus 와 Bacillus megaterium 이었다. 또한 MICP 토착미생물의 최적 성장 조건을 도출하였으며, 산업폐기물과 MICP 토착미생물의 최적 배합비를 적용한 공시체의 일축압축강도 분석을 진행하였다. 그 결과 28일 경과 후 일축압축강도는 미국 EPA 폐기물처리 표준 기준을 만족하였으며, 위해성 평가를 위한 TCLP, SPLP 분석 결과 미국 EPA 기준을 만족하였다.
연안오염퇴적물에 함유된 유기물질과 PAHs의 현장정화를 위한 생물활성촉진제의 효능을 파일럿 규모의 현장실험을 통하여 1년간 평가하였다. 실험 해역의 수온은 계절적인 요인으로 인해 16.5°C에서 21°C까지 변화가 있었으나, 파일럿 반응조의 오염퇴적물의 pH는 8.4-8.5로 서 비교적 일정하였다. 파일럿 실험종료 후 바탕시험구와 초산, 황산이온, 질산이온을 함유한 생물활성촉진제를 주입한 오염퇴적물의 화학적 산소요구량은 각각 39% 및 79%까지 감소하였으며, 휘발성고형물은 초기 약 15 g/kg에서 7 g/kg 및 2.5 g/kg까지 각각 감소하였다. PAHs는 2- ,3- ,4- ,5-ring 과 6-ring 16PAHs를 평가하였으며, 생물활성촉진제를 주입한 오염퇴적물에서 2-ring 화합물인 나프탈렌은 실험시작 2개월 후 100%(바탕시험구의 감소율 55.6%)까지 감소되어 가장 빨랐고, 12개월 후 3-ring 및 4-ring PAHs의 감소율은 모두 100%(바탕시험구의 감 소율 46%-100%)에 달하였다. 5-ring과 6-ring PAHs의 12개월 후의 감소율은 바탕시험구와 생물활성촉진제를 투여한 오염퇴적물에서 각각 26%-87% 및 77%-100%로 평가되었다. 연안오염퇴적물에 투입한 생물활성촉진제는 유기물질 및 난분해물질인 PAHs의 제거속도를 향상시킬 수 있는 것으로 평가되었다.
실험실 규모의 관 실험을 통하여 연안오염퇴적물의 생물정화 효능에 대한 생물활성촉진제 주입 깊이의 영향을 평가하였다. 생물활성 촉진제를 실험관에 충진 된 오염퇴적물의 표면과 표면으로부터 3cm, 6cm, 10cm 위치에 주입한 후 1개월 및 3개월 후 퇴적물의 유기물 및 중금 속의 특성 변화를 조사하였다. 시험 오염퇴적물의 화학적 산소요구량, 총고형물 및 휘발성고형물 함량은 생물활성촉진제를 주입하지 않은 대조 구에 비해 1개월 후 및 3개월 후에서 크게 감소하였으며, 생물활성촉진제 주입 깊이 3cm에서 최대값을 보였다. 그러나, 오염퇴적물에 주입한 생물활성촉진제의 깊이를 6cm 및 10cm로 증가하였을 때 유기오염물질 감량정도는 점차 감소하였다. 중금속 존재형태변화는 생물활성촉진제 주입 깊이 3cm에서 안정한 형태인 유기물 결합분율과 광물내 잔류분율이 현저하게 증가하였다. 오염퇴적물의 현장생물정화를 위한 최적의 생 물활성촉진제 주입 깊이는 퇴적물의 상부 표면으로부터 3cm로 평가되었다.
In recent years, a rapid growth in the population and urbanization led to an increasing industrial growth. The inadequate treated-wasted water from industry and various non-point sources causes significant negative effects on the stream water. For past few decades, extensive researches have been performed on water purification process. The purpose of this study is to investigate mechanical performance and water purification properties of porous concrete by using effective microorganisms through the site assessment test. The mechanical performance evaluation results showed that the increase void ration caused an decrease in the strength. The optimal mix rate was found to be 15% void rate From the site assessment, it was evaluated that the porous concrete improved the quality of the water and the purification ratios are 34.1 for SS, 14.6% for BOD, 34.9% for COD, 11.4% for T-N, and 12.6% for T-P. The porous concrete and the related purification technique can reduce the non-point pollution sources flowing into the river.
자생하는 미생물의 활성을 촉진시킴으로써 오염된 연안퇴적물을 현장생물정화하기 위하여 사용하는 미생물활성촉진제의 용출특성에 대한 연구를 수행하였다. 미생물의 생리활성을 촉진하는 황산염, 질산염을 오염되지 않은 연안퇴적물과 혼합하였으며, 혼합물을 볼 형태로 만 든 뒤 셀룰로스 아세테이트 및 폴리설펀으로 각각 표면을 코팅하여 볼 형태의 미생물활성촉진제 2종을 제작하였다. 또한, 황산염과 질산염이 용해된 생리활성물질 용액에 입상활성탄을 침지시켜 입자상 미생물활성촉진제를 별도로 준비하였다. 셀룰로스 아세테이트로 코팅한 미생물활 성촉진제를 전자현미경으로 관찰한 결과 코팅층 내부는 다소 큰 공극이 불규칙적으로 존재하였으나 코팅층 외부는 촘촘한 벌집모양의 공극들 이 분포되어있었다. 폴리설펀으로 코팅한 미생물활성촉진제의 경우는 코팅층의 내부와 외부 모두 공극이 없는 치밀한 구조를 보였다. 셀룰로스 아세테이트로 코팅한 미생물활성촉진제의 생리활성물질 용출율은 폴리설펀으로 코팅한 미생물활성촉진제에 비해 증류수와 해수에서 모두 높 았으며, 입자상 미생물활성촉진제로부터의 생리활성물질의 용출율은 폴리설펀으로 코팅한 미생물활성촉진제에 비해 약 9배 이상 높았다. 미생 물활성촉진제로부터 생리활성물질들의 용출속도는 정체조건에 비해 난류조건에서 약 3배 이상 빠른 것으로 평가되었으며, 생리활성물질들 중 에서 질산염은 황산염에 비해 빠르게 용출되는 특성을 보였다.
본 연구는 기계적 효율이 뛰어난 수층교반장치와 정화력이 뛰어난 광합성세균을 이용하여 호소의 수질을 개선하는 기술을 연구하고자 하였다. 대상기술인 2가지 중 수층교반장치에 대한 성능을 확인하기 위하여 교반으로 인한 수층에서의 용존산소 증가량을 확인하였고, 광합성 세균에 대한 성능을 확인하기 위하여 실험실내에 호소수 및 퇴적물을 이동하여 동일한 수조에 동일한 양을 넣은 후, 비드투입량 및 폭기 여부에 따라 퇴적물의 유기물 함량, 총인, 총질소의 농도변화를 확인하였다. 또한, 호소의 퇴적물 내 비드의 잔존 여부를 확인하기 위하여 DGGE 및 BacLight 분석을 통하여 잔존 여부를 확인하였다. 교반으로 인한 수층의 움직임을 확인하기 위하여 부위 100개를 우선 수층에 띄워 이동방향을 확인하였고, 이를 기준으로 대상 지점별로 0.5m 간격으로 유향, 유속, DO등을 확인하였다. 이를 확인한 결과, 호소 중앙부방향으로 다량의 퇴적물이 발생되어지는 것을 확인하였으며, 교반장치 가동 전에는 호소 전체 저층부(1.5m 이상 수심)에 일관성 없는 일정 유속의 수류가 형성되었고, 가동 후에는 수층(수면층 ~ 2.0 m) 각 4지점으로부터 중심부로의 수류 형성 후 확산에 의한 전체적인 교류, 수류의 가속화와 용존산소 중가로 인해 자정능력이 부여되는 것을 확인하였다. 즉, 모든 측정 지점에서 클로로필-a 및 용존산소 값의 변화가 발생하였으며, 특히, 용존산소는 각 측정지점 별 125 ~ 833% 향상되어지는 것을 확인하였다. 실험실 내 수조시험은 각 수조에 비드를 18, 36, 180, 360 g 투입하여 퇴적물 내 유기물 함량 및 총질소, 총인 농도 변화를 확인하고자 하였으며, 그 결과, 유기물 함량은 비드 투입농도가 증가되어짐에 따라 62.3% 제거되어짐을 확인하였으며, 총질소 농도는 12.5%, 총인 농도는 25.5% 제거되어졌음을 확인하였다. 호소 내 대상 광함성 세균의 잔존 여부를 확인하기 위하여, 호소 내 4개 지점에 대한 수질 및 퇴적물에 대한 BacLight 및 DGGE(Denaturing Greadient Gel Electrophoresis)분석을 실시한 결과, 총세균수(BacLight법)는 수질시료는 2.0×107 ~ 3.9×107 cells/ml로 확인되었고, 퇴적물 시료는 1.4×107 ~ 3.3×107 cells/ml로 조사되어 물시료에서 다소 높게 측정되었지만, 평균적으로 107 cells/m로 조사되었다. 활성세균의 비율의 경우, 물 시료에서는 82 ~ 88%로 지점 2 (W2)에서 가장 높게 확인되었고, 저질시료의 경우, 77 ~ 93%로 확인되어 지점 1 (S1)에서 가장 높은 활성을 보이다가 차츰 지점 번호에 따라 감소하는 경향을 확인할 수 있었다. 시료와 저질시료의 활성세균의 비교시, 최고의 활성 세균비율을 나타낸 지점은 저질 1(S1) 시료였는데, 저질의 경우, 유기물이 물시료보다 많이 분포함에 따라 세균의 활성 및 분해 활동이 활발히 일어났을 것으로 판단된다. 본 연구에서는 총세균수에 대한 활성세균의 비율이 모든 지점에서 77% 이상으로 매우 높게 확인되었다. 활성세균이란 대사적으로 활성을 띄고 있는 살아있는 세균으로써 에너지 생산, 물질 순환 및 유기물 및 영양염의 높은 이용 및 분해 등과 관련하여 총세균수보다 훨씬 정확하고 유용한 정보를 제공한다(Rodriguez et al., 1992). 그러므로 총세균수에 대한 활성세균수의 비율이 매우 높게 조사된 이번 지점에서는 조사 환경에서 영양염류의 순환이나 유기물 분해가 매우 활발히 일어나고 있음을 알 수 있었다. DGGE분석결과는 수질시료와 퇴적물 시료의 군집구조가 확연히 다름을 확인하였고, 우점종으로 확인되어지는 밴드는 각각 유지되고 있음을 확인하였다.
The purpose of this study is to use micro-organism functions for eco-friendly water-purification according to korea basin area of porous concrete using EM, utilizing bioremediation.
We have studied bioremediation of effective microorganisms on crude oil spill in Taean, west-coast of Korea. Oil contaminated soil samples were collected on December 14, 2007, seven days after the Hebei Spirit oil-spilled accident. Total petroleum hydrocarbon (TPH) was measured to evaluate the effectiveness of effective microorganisms (EM) which were composed with yeast, photosynthetic bacteria and lactic acid bacteria on oil degradation. TPH concentration before EM treatment was 323.8 mg/kg, whereas TPH concentrations on 2 days after EM treatment and that of control (without EM) was 102.1 mg/kg and 170.6 mg/kg, respectively. On six days after EM treatment TPH was 91.3 mg/kg and that of control was 127.7 mg/kg. Percentages of degraded crude oil were 47.3% without EM and 68.5% with EM, 60.6% without EM and 71.8% with EM on 2 and 6 days after EM treatment, respectively. These results clearly showed that the application of effective microorganisms toward oil-contaminated soil was quite useful to degrade crude oil spill. These results were derived from the effects of biostimulation of microbial media nutrients and bioaugmentation of effective microorganisms. If we carefully apply these effective microorganisms, it can be a useful bioremediation method to recover oil-contaminated marine ecosystems.