암모니아는 지구 온난화의 주범인 이산화탄소 배출이 없는 선박용 친환경 연료이다. 그러나 암모니아는 독성가스이면서 동시에 폭발성 및 부식성 가스로서, 선박용으로 사용되려면 누출에 대비한 안전성이 충분히 확보되어야 한다. 본 연구에서는 선박 연 료 준비실에서 암모니아 누출이 발생한 경우, 급․배기구의 위치 변화에 따른 누출 특성에 대하여 해석을 수행하고 환기 거동을 분석 하였다. 누출량은 0.1kg/s로 하고 통풍량은 30 ACH로 하였다. 급기구가 Aft-Top-Stbd, 배기구가 Fwd-Top-Stbd 에 위치 할 경우(Case 1) 가 100 초뒤 평균 암모니아 농도가 가장 높았고 급기구가 Aft-Bottom-Stbd, 배기구가 Fwd-Bottom-Port에 위치하는 경우(Case 14)가 가 장 낮았다. 50초 이후 Case 1은 약 1500ppm 이상의 암모니아 가스가 Aft 쪽으로, Case 14는 Fwd 벽면으로 정체부가 일정하게 나타났 다. 급·배기구 위치와 장비의 배치와 크기에 따라 높이별 암모니아 농도 및 속도가 다르게 분포되고 속도가 상대적으로 느린 부분에 서 정체부가 발생되고 암모니아 농도가 높아졌다. 소량의 암모니아가 10초 동안 0.1kg/s로 누출할 경우 폭발가스의 범위가 높이 1m 정도로 누출 지점 근처에서 형성되어 소량의 암모니아 누출 시 폭발성은 매우 낮았다. 본 연구에서 최적의 급·배기구 위치 조합을 통 해 암모니아 농도를 효과적으로 제어할 수 있음을 확인하였다. 이는 암모니아를 선박 연료로 사용할 때 안전성을 확보하기 위한 설계 기준 마련에 기여할 것으로 기대된다.
본 연구에서는 온실가스 배출을 감축하기 위해 메탄올을 추진 연료로 사용하는 선박에 수소 연료전지 시스템이 추가된 하 이브리드 시스템 공정을 설계하였다. Case1에서는 메탄올 연료 엔진 시스템을 설계하여, 엔진에 가솔린 대신 메탄올을 연료로 공급했 을 때의 배기가스 배출량을 알아보았다. Case2에서는 Case1에 메탄올 개질 시스템을 추가해, 수소연료전지 시스템을 설계하였다. 이 하 이브리드 시스템에서는 그레이 수소를 생산하며, 엔진과 연료전지의 출력을 조합하여 선박을 구동한다. 하지만 그레이 수소는 수소를 생산하는 과정에서 탄소를 배출한다는 단점이 있다. 이 점을 보안하기 위해 Case3에서는 CCU시스템을 추가하였다. Case2에서 배출한 Flue gas의 이산화탄소를 포집한 후, 그레이 수소와 합성해 블루 메탄올을 생산하였다. 본 연구에서는 Case study를 통해 개질 온도22 0℃, 개질 압력500kPa, SCR은 1.0, flow ratio가 0.7일 때 최적의 운전조건임을 알 수 있었다. Case3의 시스템은 Case1에 비해 탄소 배출량 을 42% 감소시켰다. 결과적으로, Case3의 하이브리드 시스템을 통해 선박의 이산화탄소 배출을 유의미하게 저감할 수 있을 것으로 예 상한다.
항만 내 선박과 부두의 사고를 예방하기 위하여 통항 및 접안 안전성 평가를 통하여 안전한 부두가 건설되어 관리하고 있으나, 선 박의 접안 및 계류 과정에서 선박이 부두에 충돌하거나 로프로 인한 인명사고의 발생 등 예측할 수 없는 사고들이 종종 발생한다. 자동계류장 치는 선박의 신속하고 안전한 계류를 위한 자동화된 시스템으로 로봇 매니퓰레이터와 흡착 패드로 구성된 탈/부착 메커니즘을 가지고 있다. 본 논문은 자동계류장치의 흡착 패드의 위치 및 속도제어에 필요한 선체와의 변위 및 속도 측정 시스템을 다룬다. 자동계류장치에 적합한 측 정 시스템을 설계하기 위하여, 본 논문은 우선 센서의 성능 및 실외 환경적 특성 분석을 수행한다. 다음으로 이러한 분석 결과를 토대로 실외 부두환경에서 설치되는 자동계류장치에 적합한 변위 및 속도 측정시스템의 구성 및 설계 방법에 대해 기술한다. 또한 센서의 측정상태 감지 및 속도 추정을 위한 알고리즘을 제시한다. 제안된 방법은 다양한 속도 구간에서의 변위 및 속도 측정 실험을 통해 그 유용성을 검증한다.
선택적 촉매 환원법(SCR)은 질소산화물(NOx)을 저감하는 매우 효율적인 방법으로 알려져 있으며 발생된 질소산화물(NOx)을 질 소(N2)와 수증기(H2O)로 환원시키는데 촉매 작용을 한다. 질소산화물(NOx) 저감 성능을 결정하는 요소 중 하나인 촉매는 셀 밀도가 증가하 면 촉매효율이 증가하는 것으로 알려져 있다. 본 연구에서는 실습선 세계로호에 설치되어 있는 발전 기관의 배기가스 조건을 모사한 실 험장치를 통하여 100CPSI(60Cell)촉매의 부하에 따른 질소산화물(NOx) 저감 성능을 확인하고 세계로호에 설치되어 있는 25.8CPSI(30Cell) 촉 매의 기존 연구 자료와의 비교를 통해, 셀 밀도가 질소산화물(NOx)의 저감에 미치는 영향에 대하여 고찰하였다. 실험용 촉매는 셀 밀도만 변화를 주었고 형태는 벌집형(honeycomb), 조성물질은 V2O5-WO3-TiO2를 동일하게 사용하여 제작하였다. 실험결과 100CPSI(60Cell) 촉매의 질소산화물(NOx) 농도 저감율은 평균적으로 88.5%이며 IMO specific NOx 배출량은 0.99g/kwh로 IMO Tier III NOx 배출기준을 만족하였다. 25.8CPSI(30Cell) 촉매의 경우, 질소산화물(NOx) 농도 저감율은 78%, IMO specific NOx 배출량은 2.00g/kwh 이었다 두 촉매의 NOx 농도 저감 율과 IMO specific NOx 배출량을 비교하였을 때, 100CPSI(60Cell)촉매가 25.8CPSI(30Cell) 촉매보다, NOx 농도 저감율은 10.5% 높고 IMO specific NOx 배출량은 약 2배 적은 것을 확인하였다. 따라서 촉매의 셀 밀도를 높임으로써 효율적인 탈질효과를 기대할 수 있으며 향후 실선 테스트를 통하여 검증한다면 촉매의 부피 저감을 통한 제작 비용을 줄이고 협소한 선박 기관실을 효율적으로 사용하기 위한 실용적 인 자료로서 기대된다.
국제해사기구(IMO)의 온실가스(GHG) 감축 전략과 같은 환경규제를 강화함에 따라 친환경 선박 및 대체 연료 등 기술 개발이 확대되고 있다. 그의 일환으로 해운사와 조선사를 중심으로 에너지 저감과 풍력 추진 기술을 활용한 선박 추진 기술이 대두되고 있다. 풍 력 추진 기술의 확보와 실증 연구를 조선 및 해운 분야에 도입함으로써 친환경 기술을 활용한 고부가가치 시장을 창출할 수 있으며, 운항 선박의 연료 소비율을 줄임으로써 연비를 약 6~8 % 정도 향상시켜 GHG의 감축을 기대할 수 있다. 로터 세일(Rotor Sail, RS) 기술은 원형 실린더가 일정한 속도로 회전하여 유체를 통과할 때 실린더의 수직 방향으로 유체역학적 힘을 발생시키는 기술이다. 이를 마그누스 효과 (Magnus Effect)라고 하며, 본 연구에서는 선박에 설치된 풍력보조추진 시스템인 RS 주위의 난류 유동특성에 관한 수치해석적 연구를 통하 여 추진효율을 높일 수 있는 방안을 제시하고자 하였다. 그래서 RS의 공기 역학적 힘에 영향을 미치는 매개변수로써 속도비(Spin Ratio, SR)와 종횡비(Aspect Ratio, AR) 변화에 따른 양력계수( )와 항력계수( )를 도출하였고, RS 끝단 플레이트(End Plate, EP) 적용에 따른 RS 주변 유동특성을 비교하였다.
선박의 건조공정 중 강재의 절단과 곡 가공, 용접에 있어 화염의 사용은 필수적이다. 현재 조선소의 강재 절단과 가공 과정에서 는 아세틸렌이 화염 연료로 가장 많이 사용되고 있지만, 폭발 사고의 위험성과 상대적으로 적은 발열량의 한계로 최근에는 프로판 연료의 활용이 증가하고 있다. 하지만 프로판 연료는 상대적으로 가공 속도가 느리고, 가공 시 슬래그의 발생빈도가 높아 품질이 저하된다. 대체 연료로써 프로필렌이 주목받으며 가공 속도와 품질향상에 대한 기대가 증가하고 있다. 프로필렌은 발열량이 우수한 연료로 강재 가공 간 생산성과 가공 품질의 우수성을 갖추고 있다. 이에 본 논문에서는 프로판, 프로필렌 화염을 이용한 철판 가공 시 각 연료의 연소 특성을 분 석 및 비교하였다. 프로필렌 화염을 이용한 철판 가공 시 배출되는 온실가스와 유해가스를 프로판 연료의 배출량과 비교하여 저감효과를 실험적으로 확인하였다. 또한, 가공 연료에 따른 입열량이 선박용 강재의 기계적 강도 변화에 미치는 영향을 알아보기 위해 열 분포실험과 인장시험을 수행하였다. 실험 결과로, 대체 연료인 프로필렌을 사용할 때 프로판 연료에 비해 온도분포가 고르게 나타났다. 기계적 강도 실 험 결과로 인장강도의 저하는 관찰되지 않았으나, 변형률은 감소하는 경향을 보였다. 본 연구의 결과를 바탕으로 향후 실제 조선소의 강재 가공 및 절단과정에 적용하였을 때, 발생하는 문제점에 대한 분석 및 보완연구를 수행할 예정이다.
본 연구에서는 80k Bulk carrier의 저항성능 향상을 목적으로 선미부에 1개의 핀을 부착해 선미 유동을 제어하였고, 저항성능 및 반류의 변화를 분석하였다. 부착된 핀은 직사각형 단면을 가지며, 길이와 폭, 두께는 고정된 채 길이 및 흘수 방향 부착 위치와 유선에 대 한 각도만 변화가 있었다. 나선 및 핀이 부착된 선체에 대한 모형 스케일에서의 CFD 해석이 수행되었고, 그 결과를 실선 확장 후 비교하 였다. 핀은 프로펠러로 유입되는 빌지 볼텍스의 경로를 선미 트랜섬 쪽으로 변화시켰고, 이는 프로펠러 상부와 선미부의 압력을 증가시켰 다. 이로 인해 선체의 압력저항 및 전 저항이 감소되었으며, 감소율은 핀의 부착 위치가 선미 및 선저와 가까울수록 높았다. 또한 핀은 공 칭반류를 감소시켰는데 핀의 각도가 커질수록 반류의 변화가 컸고, 전 저항 저감률은 최대가 되는 특정 각도까지만 비례하였다. 대상 선 박에 단일 핀을 부착했을 시의 최대 전 저항 저감률은 약 2.1 %였고, 선미로부터 수선간장의 12.5%, 선저로부터 흘수의 10 % 위치에 14 의 각도로 부착됐을 때이다.
Recently, air pollution from fossil fuels is at a serious level, and the IMO proposes to reduce greenhouse gas emissions by about 70% by 2050, and controls greenhouse gas emissions by applying the energy efficiency disign index(EEDI) to each ship type. In this study, the marine fuel oil viscosity of MGO, MDO, HFO and CGO according to the temperature change was compared and measured and the difference was analyzed. As a result, the viscosity of CGO was 3.32mPa·s, which was almost similar to MGO(3.40mPa·s) and MDO(3.51mPa·s) so it was judged that it could be used as a marine fuel, and it was found that there was a significant difference with HFO at P<0.01 there was.
본 연구에서는 CO2 가스 배출 저감 및 선박 폐열 회수 증대를 목적으로 선박 배기로 버려지는 폐열을 전기로 변환하는 ORC(Organic Rankine Cycle) 발전에 대해 시뮬레이션을 통한 냉매별 효율을 보여주고 있다. 상대적으로 고온인 배기가스의 폐열과 상대적으로 저온인 냉각해수를 이용하여 Aspen HYSYS 11을 이용하여 시뮬레이션을 수행하였다. 해수냉각 ORC 발전시스템의 시뮬레이션 결과, 작동유체 효율은 R717 냉매가 2.86 %로 가장 높았고, 다음 순으로 R152a, R134a, R143a, R125a로 나타났다.
Due to severe environmental pollution from ships, IMO(International Maritime Organization) is imposing strict controls on pollutant emission in ECA(Emission Control Area). There have been active studies to find fuel that could replace existing fossil fuel and especially in recent times, diverse studies on recycling of coffee ground are in progress. The annual domestic consumption of coffee was 150,000 tons according to the data of 2017 year and 99% of them are coffee ground to be scrapped. Therefore, in this study, coffee ground was mixed with diesel oil to develop alternative fuel. The analysis result showed that when coffee ground and diesel oil were mixed at a rate of 30%, 20% and 10%, the diameter of coffee ground droplet was 49.1μm, 45.9μm and 17.5μm respectively.