탄소섬유는 경량이면서 높은 기계적 특성 때문에 우주항공, 선박, 자동차, 토목 및 건축과 같은 산업분야에서 그 어느 때 보다 더 광범위하게 적용되고 있다. 본 연구는 섬유혼입률 및 섬유길이 변화에 따른 탄소섬유 보강시멘트 복합재료( CFRC)의 역학적 특성과 휨 거동을 분석하였으며, 또한 자연 낙하시험에 의한 모르타르 시편에 대한 내충격성을 비교, 검토하였다. 더불어, 탄소섬유(CF)의 혼입률은 0.5%, 1.0%, 2.0% 및 3.0%로 변화를 주었으며, 각각의 섬유길이는 6 mm와 12 mm를 사용 하였다. 실험결과, 플로우 값은 탄소섬유의 뭉침현상으로 인해 유동성 측면에서 매우 불리하였으며, 단위용적질량은 다소 감소하였다. 특히, 압축강도는 탄소섬유 혼입량이 증가함에 따라 감소하는 것으로 나타내었다. 반면 휨 강도는 섬유 길이가 12 mm이고 2% 혼입한 것이 가장 높은 휨 강도를 보였다. 내충격성 시험결과, 보통 모르타르 시편은 완전파괴까지의 낙하횟수가 2∼3회 정도 걸리지만 반면 CFRC 시편은 섬유혼입량이 증가함에 따라 다소 차이가 있지만, 섬유길이가 12 mm이고 섬유혼입량 2% 인 경우 충격에 대한 저항성이 가장 높았다.
This paper describes the effect of steel fiber volume fraction and aspect ratio on mechanical properties of SFRC with compressive strength of 40 MPa. In this study, The fiber volume fractions consist of 0.25%, 0.50% and 0.75% and aspect ratios are 64 and 80 used. The prisms with 150×150×550 mm were made and tested in accordance with EN-14651. Test results show that the superior flexural performance was observed in SFRC with higher fiber volume fraction and aspect ratio.
The purpose of this study was to evaluate flowability of engineered cemetitious composite(ECC) Using blast furnace slag and fly ash as a binder in mixture. From the test result, flowability value of all ECC mixtures show good flowability and self compacting performance.
According to the KCI 2012, it is presented that steel fiber can replace minimum shear reinforcement when beams are designed. However, there is no standard for columns, and there is a lack of research on SFRC columns. Therefore, it is evaluated how much the capacity of columns increases according to the volume fraction of steel fiber through the cyclic lateral loading tests. Also, it is evaluated whether steel fiber can replace transverse reinforcements in concrete columns.
This paper examines the effect of steel fiber volume fraction on compressive and flexural properties of high-strength concrete with compressive strength of 40 MPa. The fiber volume fractions used in this study consist of 0.5, 0.75 and 1.0%. The prisms with 150x150x550 mm were made and tested in accordance with EN-14651.
The purpose of this study was to evaluate flowability of engineered cemetitious composite(ECC) Using blast furnace slag and fly ash as a binder in mixture. From the test result, flowability value of all ECC mixtures show good flowability and self compacting performance.
Based on the study of researchers carried about SFRC, it was found that SFRC was effective to achieve flexural toughness according to higher volume fraction. On the other hand, higher volume fraction did not effect at compressive strength and toughness.
Concrete behaves as a brittle material with low tensile strain capacity. By adding fibers, the cracking in concrete matrix is controlled, and the mechanical properties are improved. In this study, the mechanical properties of fiber reinforced concrete are compared with fiber type and fiber volume fraction. From the results, the fiber mixed in concrete must be at least 0.5% regardless fiber type, in order to ensure the compressive and flexural strength equivalent or higher than OPC.
This paper presents an experimental study on the improvement of ductile and flexural strength for high performance fiber reinforced cementitous composites (HPFRCC). The test was evaluated by compressive and flexural behavior of HPFRCC(compressive strength : 180 MPa) according to aspect ratio and volume contents of steel fiber. The flexural strength was increased by aspect ratio near 100 or increasing volume contents of steel fiber while there is no clearly result on the compressive strength.
Concrete behaves as a brittle material with low tensile strain capacity. By adding fibers, the cracking in concrete matrix is controlled, and the durability is improved. In this study, the microstructure and Chloride diffusion resistance of fiber reinforced concrete are compared with fiber type and fiber volume fraction. From the results, the fiber mixed in concrete must be at least 0.5% regardless fiber type, in order to ensure the chloride diffusion coefficient higher than OPC at 91days. However, the micro structure distribution is affected with fiber volume fraction and fiber type at range 10~100nm.
Concrete shrinkage is happened due to the cement hydration and water evaporation from early ages, and it induces crack of concrete. In this study, the crack resistance of fiber reinforced concrete was compared with fiber type and fiber volume fraction. From the results, cracking is delayed when the volume fraction is increased. And, crack resistance is improved regardless of fiber type.
본 연구는 SIFCON 형태의 고성능 강섬유보강 시멘트 복합체의 섬유혼입률에 따른 휨실험을 수행하였고, 실험결과를 바탕으로 휨성능을 평가하였다. 슬러리를 충전하는 형태로 일반 섬유보강시멘트와 달리 높은 섬유혼입률을 확보할 수 있는 장점을 가지고 있다. 주요 실험변수는 섬유혼입률 8.0%, 7.5%, 7.0%, 6.5% 및 6.0% 이며, 각 변수에 대한 휨강도 및 휨인성 특성을 분석하였다. 그 결과, 높은 섬유혼입률로 인하여 초기균열 발생 이후에도 계속적으로 하중이 증가하였으며, 최대강도 이후 충분한 잔류강도를 확보하였다. 또한 최대 50MPa 수준의 높은 휨강도를 발현하였으며, 섬유혼입률에 따른 휨강도 및 휨인성은 비례하여 증가하는 경향으로 나타났다.
Currently, Eco-friendly construction materials are widely utilized for reducing CO2 emission in construction. Furthermore various engineering fibers are also added for improving a brittle behavior in concrete. In the paper, concrete specimens with 10% and 20% replacement ratio with RHA (Rice Husk Ash) are prepared, and engineering behaviors in RHA and OPC concrete are evaluated with different addition of coconut fiber from 0.125~0.375% of volume ratio. Several basic tests including compressive strength, tensile strength, flexural strength, impact resistance, and bond strength are performed, and crack width and deflections are also measured in flexural test. RHA is evaluated to be very effective in strength development and 0.125% of fiber addition leads significant improvement in tensile strength, ductility, and crack resistance. RHA and coconut fiber are effective construction material both for reutilization of limited resources and performance improvement in normal concrete.
The purpose of this study was to effects on flexural performance of SFRC prism with different fiber volume fraction. The test variables such as aggregate maximum size(8, 13, 20mm) and steel fiber volume faction(0, 1, 2%). Specimen size is 100×100×400mm and tested in for points loading. Test results indicated that increase the fiber volume fraction increase with flexural strength and smaller aggregate size more than higher performance with concrete.
폴리프로필렌섬유보강 시멘트 복합재료와 구조용 합성섬유의 부착특성을 평가하였다. 폴리프로필렌섬유는 0.10%, 0.15% 및 0.20%의 체적비로 적용하여 dog-bone 시험을 실시하였다.
구조용 합성섬유와 폴리프로필렌섬유보강 시멘트 복합재료 사이의 부착강도는 폴리프로필렌섬유의 혼입률이 증가할수록 증가하였으나 0.20% 이상이 되면 감소하였다. 또한 폴리프로필렌섬유의 첨가는 계면인성과 마찰저항을 증가시킨다. 인발시험 후 구조용 합성섬유 표면의 미소구조 분석은 폴리프로필렌섬유의 혼입률이 증가할수록 긁힘 현상이 증가하였다.
본 연구는 고강도 콘크리트의 복합유기섬유 혼입률 변화 및 ISO와 RABT의 가열온도곡선 변화에 따른 내화시험을 실시한 후 폭렬방지성상 및 잔존압축강도 특성 등을 분석한 것으로, 그 결과를 요약하면 다음과 같다. 복합유기섬유 혼입 콘크리트의 기초적 특성으로 유동성은 섬유혼입률이 증가할수록 직선적으로 저하하는 경향이었고, 공기량은 약간의 증가 또는 감소의 경향은 있었으나 큰 차이 없었으며, 28 일 압축강도는 완만한 감소경향을 나타내었다. 내화특성으로, RABT 가열온도곡선의 경우는 ISO 가열온도곡선에 비해 복합유기섬유 혼입률이 많은 범위까지 폭렬양상을 나타내었으나, 주로 박리폭렬일뿐 내부까지 극심한 폭렬양상은 발생하지 않았다. 결국 W/B 25%인 고강도 콘크리트의 경우 ISO 가열온도곡선은 섬유의 혼입률 0.04%이상에서, RABT 가열온도곡선의 경우는 섬유의 혼입률 0.10%이상에서 폭렬이 방지되는 것으로 나타났다. 가열온도곡선 변화에 따른 질량감소율은 폭렬이 방지된 경우 ISO 가열온도곡선은 7%전후, RABT 가열온도곡선은 9%전후로 나타났다. 가열온도곡선변화에 따른 잔존압축강도율은 폭렬이 방지된 경우 ISO 가열온도곡선은 50%~60%, RABT 가열온도곡선은 30%~35%를 나타내었다.