검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 50

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study developed and tested a pilot-scale biowindow for simultaneous removal of odor and methane from landfills. The test was conducted in a sanitary landfill site during the summer season (July and August). The average temperature inside the biowindow was 5°C higher than the average air temperature, rising to 37–48oC when the outdoor temperature was very hot. The complex odor removal rate (based on the dilution-to-threshold value) in the biowindow during the summer was 91.3- 98.8% (with an average of 96.2±4.2%). The average concentration of hydrogen sulfide was 3,024.9±805.8 ppb, and its concentration was found to be the highest among 22 odorous compounds. The removal efficiencies of hydrogen sulfide and methyl mercaptan were 89.1% and 83.2%, respectively. The removal of dimethyl sulfide was 17.7%, and no ammonia removal was observed. Additionally, the removal efficiencies of toluene and xylene were 85.2% and 72.5%, respectively. Although the initial methane removal was low (24.9%), the methane removal performance improved to 53.7–75.6% after the 11th day of operation. These results demonstrate that the odor and methane removal performance of the pilot-scale biowindow was relatively stable even when the internal temperature of the biowindow rose above 40oC in the summer. Since the main microorganisms responsible for decomposing odor and methane are replaced by thermotolerant or thermophilic microorganisms, and high community diversity is maintained, odor and methane in the biowindow could be stably removed even under high-temperature conditions.
        4,500원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We conducted research on the removal performance of various odor substances using a deodorizing agent, hypochlorite ion (OCl-), in odor emission sites where various odor-causing substances occur simultaneously. In experiments treating odor gases containing mixtures of aldehydes (acetaldehyde, n-butyl aldehyde, iso-valeraldehyde, propionaldehyde), sulfur compounds (hydrogen sulfide, methyl mercaptan, and dimethyl sulfide), and nitrogen compounds (ammonia and trimethyl amine), it was demonstrated that the introduced odor substances could be simultaneously removed when electrolyzed water was used. The overall removal efficiency was found to be significantly higher than when water alone was used. Particularly, it showed simultaneous effectiveness against acidic, neutral, and alkaline odor substances such as ammonia and hydrogen sulfide. Considering the positive aspects with regard to chemical safety, the use of salt instead of chemicals, and the continuous regeneration of the oxidizing agent, this environmentally friendly deodorization technology is expected to contribute to securing excellent odor removal capabilities and wide-ranging deodorization applications.
        4,200원
        3.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Complaints about foul odors are emerging as an issue, and the number of complaints is steadily increasing every year. Biofiltration is known to remove harmful or odorous substances from the atmosphere by using microorganisms, and full-scale biofilters are being installed and operated in various environmental and industrial facilities. In this study, the current status and actual odor removal efficiency of full-scale biofilters installed in publicly owned treatment facilities such as sewage, manure, and livestock manure treatment plants were investigated. In addition, the effects of design and operating factors on their efficiency were also examined. As a result, it was found that odor prevention facilities with less than 30% odor removal efficiency based on complex odors accounted for 40%-50% of the biofilters investigated. In investigating the appropriate level of operating factors on odor removal efficiency, it was found that compliance with the recommended values p lays a significant role in improving odor removal efficiency. In the canonical correlation analysis for the on-site biofilter operation and design data, residence time and humidity were found to be the most critical factors. The on-site biofilter operation and design data were analyzed through canonical correlation analysis, and the residence time and humidity maintenance were found to be the most important factors in the design and operations of the biofilter. Based on these results, it is necessary to improve the odor removal efficiency of on-site biofilters by reviewing the effectiveness of the operation factors, improving devices, and adjusting operating methods.
        4,600원
        4.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of the white fumes from the tenter process of a textile plant in an industrial complex are generated by water vapor and oil mist. While general water vapor disappears when the humidity is lowered, the white fume generated in the tenter process does not disappear and is continuously maintained, resulting in environmental problems and complaints. Efforts to reduce white fume are being conducted, but it is vitally important to develop a performance index that quantitatively calculates and deduces the degree by which white fume has been reduced, so that a tangible and visible result can be obtained in the performance evaluation of prevention facilities. In this study, the removal efficiency or performance of a general wet scrubber and a wet electrostatic precipitator (electrical fume collector, EFC) installed in the actual textile tenter process was analyzed by the light scattering method that can measure the concentration of particles up to a high level. The white fume removal efficiency of the EFC was 92%, much higher than the 17% removal efficiency of the general scrubber. In addition, the EFC was more effective in removing toluene, 1,1'- [oxybis(methylene)]bis- Benzene, and benzothiazole, which are the major substances generated from the textile tenter process, as well as complex odors. From these results, it was found that the light scattering method is one of the useful tools to evaluate the performance of white fume prevention facilities in the industrial field in terms of satisfying the urgent need for measurement and the ability to obtain a clear and precise result on site. This approach is meaningful in that real-time quantification is applicable more intuitively than the gravimetric method in assessing the fume removal performance as it can be observed with the naked eye.
        4,200원
        5.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to evaluate the applicability of a carrier media with natural minerals as packing material in a biofilter to remove odor-causing compounds. The carriers were prepared by mixing powdered zeolite, barley stone, and clay. They have a pellet type with a length of 5m m to 10 mm, 3.2 m2/g of a specific surface area, and 0.04 cm3/g of a pore volume. The adsorption capacity and the biodegradation by biomass formation on the media were experimented with toluene and ammonia as the test compounds. The carrier possessed the ability to adsorb toluene and ammonia. The adsorption capacity of toluene and ammonia at the inlet concentration of 100 ppmv was 58 g/g and 96 g/g, respectively. In the biofilter using the carrier as the packing material, the biofilter performances were different depending on the supply of moisture and liquid-nutrient. The critical loading was found to be 33.13 g/m3/hr for toluene removal and 6.5g /m3/hr for ammonia removal even when no nutrients were supplied. The proposed material has been confirmed to be capable of adsorbing inorganic and organic compounds, and can be effectively applied as packing materials for the biofiltration.
        4,000원
        6.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emitted from the degradation process of food waste is a common cause of public complaints, and appropriate odor treatment methods need to be implemented. In this study, a hybrid plasma catalyst system was applied to treat individual odorous compounds including acetaldehyde and hydrogen sulfide, which are known to be major odor compounds produced from food waste. MnOx catalysts were prepared by varying Mn/support loading ratios, and surface analyses showed that the Mn_5% catalyst achieved the highest performance because dominant manganese oxide species on the surface of the catalyst was found to be Mn2O3, Using the catalyst, the removal rate of hydrogen sulfide steadily increased as the space velocity in the MnOx catalyst reactor decreased. Meanwhile, the removal rate of acetaldehyde did not increase significantly when decreasing the space velocity more than 24,000 hr-1. Following the catalyst experiments using the individual odorous compounds, the hybrid system was applied for testing odor treatment of actual food waste. The actual food waste study showed that both hydrogen sulfide and acetaldehyde were steadily removed; hydrogen sulfide was removed almost completely during the initial 30-minute period, while the acetaldehyde removal was started after the decrease of hydrogen sulfide. In addition, it was confirmed that the dilution-to-threshold for odor reduced from 2,080 D/T to 300 D/T during the initial period. In conclusion, the plasma and Mn2O3 catalyst system can be applied in food waste collection containers to effectively control odor problems.
        4,000원
        7.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emitted from food waste is commonly known as a severe problem, and needs to be controlled to minimize public complaints against food waste collection systems. In this study, ozone oxidation with manganese oxide catalyst, which is known to effectively treat odorous substances at room temperature, was applied to remove acetaldehyde and hydrogen sulfide, the model odorous compounds from food waste. In addition, the effect of relative humidity (RH) on the ozone/catalyst oxidation was tested at 40%, 60%, and 80%. When the catalyst was not applied, the removal of acetaldehyde was not observed with the ozone oxidation alone. In addition, hydrogen sulfide was slowly oxidized without a clear relationship under RH conditions. Meanwhile, the ozone oxidation rates for acetaldehyde and hydrogen sulfide substantially increased in the presence of the catalyst, but the removal efficiencies for both compounds decreased with increasing RH. Under the high RH conditions, active oxygen radicals, which were generated by ozone decomposition on the surface of the catalyst, were presumably absorbed and reacted with moisture, and the decomposition rate of the odorous compounds might be limited. Consequently, when the ozone oxidation device with a catalyst was applied to control odor from food waste, RH must be taken into account to determine the removal rates of target compounds. Moreover, its effect on the system performance must be carefully evaluated.
        4,000원
        8.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite (OCl−) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.
        4,000원
        10.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is necessary to develop a device for the design of wet scrubber with a more efficient deodorization performance in order to enhance the odor reducing effect of the wet scrubber. Therefore in this study, the superiority of the new wet scrubber with the centrifugal separation function different from the conventional wet scrubber was analyzed by the computational fluid dynamics. From CFD analysis, the pressure and velocity distribution, the peak vorticity, the retention time and the flow uniformity were calculated and compared with the performance characteristics of the centrifugal separator. As the results of CFD analysis, the peak vorticity and retention time of the gas flow were increased about 22% and the flow uniformity was improved about 7.2% by the centrifugal separator. Therefore the centrifugal separator in the wet scrubber will improve the deodorizing effect and the cleaning condition of the gas.
        4,000원
        11.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate and compare the change of wind velocity and processing efficiency of sulfuric compounds and more complex odors. The research was conducted in a facility specializing in odor prevention applications using upgraded existing research equipment (from 30 CMM to 200 CMM) on wastewater treatment. The research equipment was installed with the purpose of removing odor from the wastewater treatment (Pasteur Factory) located in Hoengseong-gun, GangWon. To investigate the treatment efficiency of hydrogen sulfide test samples were evaluated with different blower installation positions and changes in wind speed. The wind speed at the static pressure is about 1.70~2.08 times faster than that of the static pressure, although the blower power is different. The efficacy of sulfur compounds and complex odor treatment was 91.27% and 95.20%, respectively. The study results show that it is necessary to review the design point of wind speed due to the increase in facility scale. In addition, considering the characteristics of complex odor, it is necessary to consider additional surcharges. It was determined that the facility plan for odor prevention in relation to wind velocity will be reexamined. Ongoing research will also be considered to help identify any disadvantages and solutions for the ventilator positioning, which is currently installed in the back.
        4,000원
        12.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An up-flow botanical bioreactor was proposed as an economical and environmentally-friendly control process to remove the odorants, specifically ammonia and hydrogen sulfide, in exhaust gas. Liriope Platyphylla and Hedera Helix were selected as the test plants, and were put into the lab-scale reactor filled with the ceramic media. During 52 days of operation with ammonia loading of 1.16 g/m3·d, Liriope Platyphylla showed better performance in ammonia removal. Liriope Platyphylla was further tested by the simultaneous loading of 6.96 g/m3·d for ammonia and 1.00 g/m3·d for hydrogen sulfide. Microbial activity in the botanical reactor was greatly enhanced by mixed odorants rather than single odorants, and can contribute to removing odor in the exhaust gas. Biological uptake by plants reached up to 20% of total nitrogen loading to the botanical reactor.
        4,000원
        13.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The metal plating industry produces a large amount of wastewater generally containing heavy metals with various chemical compounds; as such, treating the wastewater is both an environmental and an economic challenge. A vacuum evaporation system has been developed to effectively reduce the volume of plating wastewater. However, the gas stream discharged from the distillation unit of the evaporator is often contaminated with high concentrations of odorous compounds such as ammonia and dimethyl disulfide (DMDS). In this study, a non-thermal plasma process operated in wet conditions was applied to remove the odorous compounds, and it showed high removal efficiencies of greater than 99% for ammonia and 95% for DMDS. However, the gas flowrate more substantially affected the efficiency of ammonia removal than the efficiency of DMDS removal, because the higher the gas flowrate, the shorter the contact time between the odorous compound and the mist particles in the wet plasma reactor. The analyses of the maximum removal capacity indicated that the wet non-thermal plasma system was effective for treating the odorous compounds at a loading rate of less than 20 mg/m3/min even though the lowest amount of electrical power was applied. Therefore, the wet-type non-thermal plasma system is expected alleviate to effectively abate the odor problem of the vacuum evaporator used in the treatment of plating wastewater.
        4,000원
        14.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to confirm the removal effect of odorous gas through the multi process. The combination of Scrubber, UV and Adsorption was analyzed using the odor gas of reservoir. Analysis was carried out for six times in total and collection was made once per each process. Sampling was performed in the afternoon during August (1:00 pm~4:00 pm). Multi process has been designed to facilitates the accessories exchange. The advantage is that it facilitates the replacement of the activated carbon and it is convenient to change the type of chemical according to the type of pollution materials. As a result, for odor gas removal efficiency, ammonia 91.8%, trimethylamine 72.0%, hydrogen sulfide 99.9%, methyl mercaptan 99.9% were removed respectively. Removal efficiency of the process is the scrubber (alkali), activated carbon adsorption, scrubber (acid) and UV procedure from the highest order. Further studies on the operating method and efficiency of multi process by the change of wind speed and chemical are recommended.
        4,000원
        15.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        도시지역 합류식 하수배제 설비인 우수받이 및 하수관거, 정화조 등에는 유기성 고형 물이 퇴적되기 쉬우며, 유기성 퇴적물이 부패되는 과정에서 고농도의 황계열 악취물질이 발생한다. 본 연구에서는 전기산화방식을 이용하여 유기성 퇴적물 내에 용존된 악취물질 및 전구물질을 저감시켜, 하수관거에서 기상으로 배출되는 악취 문제를 해결하고자 하였다. 실험실 규모의 밀폐된 회분식 반응기에 하수슬러지(COD 기준 8,000 ~ 28,000 mg·L-1)를 투입하고, 발생되는 악취물질 농도와 악취발생특성을 조사하였다. 여기에 전기산화시스템 을 적용하여 황계열 악취물질과 전체 유기물의 산화 및 분해실험을 진행하였다. 전기산 화 실험을 진행한 결과, 밀폐된 반응기의 기상에서 450 ppm의 고농도로 발생한 황화수 소가 반응 30분 이내에 검출한계 이하까지 제거되었으며, 메틸머켑탄과 디메틸설파이드 는 85% 이상 제거되었다. 투입된 전기에너지당 황계열 악취물질의 제거율은 최대 0.33 mg-S·kJ-1로 나타났다. 또한 1시간의 반응기간 동안 회분식 반응기 내에서 황계열 악취물 질 뿐만 아니라 고농도 퇴적물에 함유된 전체 유기물 농도가 56% 감소하여, 전기산화시 스템이 악취를 유발하는 유기성 전구물질을 동시에 저감하는 효과를 나타내었다. 결과적 으로 최소한의 전기에너지를 이용하여 하수관거 퇴적 유기물에 의한 악취문제를 해결할 수 있을 것으로 기대된다
        4,000원
        16.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        황화수소 등 유황계 악취물질은 매우 낮은 최소감지농도를 갖고 있기 때문에 악취를 제거하기 위해서는 출구에서 악취가 검출되지 않는 적정 부하량에 대해 검토가 이루어져야 한다. 본 연구에서는 활성탄을 가공하여 제작한 습윤 상태의 활성탄소섬유를 이용하여 현장조건과 유사하게 황화합물악취 H2S 10 ppm, MT 3 ppm, DMS 1.5 ppm 3성분의 혼합가스에 대해 약 130일 동안 제거실험을 수행하였다. 그 결과, H2S는 유입부하량을 0.78 g-H2S / kg ACF·d 이하로 설정하여 운전하는 것이 필요하며, MT는 불완전산화 부산물인 DMDS가 출구에서 검출되어 악취를 유발하므로 안정적인 운전을 위해서는 유입부하량을 0.27 g-MT / kg ACF·d 이하로 설정하여 운전하는 것이 필요한 것으로 나타났다. DMS는 유입부하량의 변화에 관계없이 거의 제거되지 않는 것으로 나타났다.
        4,000원
        17.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, odor and white smoke emitted from textile industry has emerged as a social problem. Most of pollutants from textile industry is due to the emissions from tenter facility, and in many case wet scrubber is widely used for treating this waste gas from tenter facility. However, it is still difficult to improve the environment of textile complex because of low treatment efficiency. For this reason, we carried out the EFC (Electric Fume Collector) pilot test (50 CMM) for removing odorous substances from waste gas emitted from tenter facility. EFC is a kind of wet electrostatic precipitator. As a result of this study, pollutants and white smoke were eliminated effectively and quite large amounts of oil could be recovered.
        4,000원
        18.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the removal characteristics of reduced sulfur compounds (RSC) were investigated against activated carbon (AC) by means of electric cooling and thermal desorption. To this end, three types of AC materials were selected and tested against gaseous RSC standards prepared at 50 ppb concentration. Each of these AC materials designated with its own target odorant compounds was tested for the removal rate of RSC by comparing their quantities between prior to and after passing the adsorption tube. All the analysis of RSC was made by Gas Chromatography (GC)/Pulsed Flame Photometric Detector (PFPD) combined with Air Server (AS)/Thermal Desorber (TD). The rate of RSC removal was quantified as a function of RSC loading time (Exp. 1) and of RSC flow rate into TD (Exp. 2). The results of Exp. 1 showed that the adsorption of RSC increased with RSC loading time (from as little as 1 to 20 min). In Exp. 2, the adsorption of RSC also increased in relation to RSC flow rate (10 to 100 mL/min). The removal rate of RSC was also distinguished by chemical properties such as the compounds of low molecular weights (H₂S and CH₃SH) vs. high ones (DMS and DMDS).
        4,500원
        19.
        2008.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The interest of natural chemicals has been increased because of inflection of endocrine disruptor and fatal health danger originated from artificial chemical compounds. The essential oil is one of the representative natural chemicals which can be collected from the most plants and can be applied to high value‐added merchandise such as the antiseptics, anti‐oxidants and deodorants. In this study, essential oil was testified to remove odor such as NH3. In case of the essential oil of a pine leaf, removal efficiency of NH3 was about 100%. The NH3 removal efficiency of the mixed solution (mixture of essential oil and ethanol) was slightly lower than that of pure essential oil and this leads to the conclusion that use of mixture is more economical and effective to control the odor.
        4,000원
        20.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we attempted to analyze removal efficiency of odorous compounds emitted from Grit chamber and night soil treatment facility using biofilter with microbial catalyst. Air dilution method was used for mixed odor gases analysis. UV-vis spectrophotometer for ammonia and Hydrogen sulfide, Methyl mercaptan, Dimethyl sulfide, Dimethyl disulfide were measured using GC/PFPD. Sample gases were collected at the inlet and outlet of biofilter. The analysis result showed that average concentration of major odorous compounds were ammonia with 5,100 ppb and hydrogen sulfide with 797 ppb from grit chamber and ammonia with 1,407 ppb and hydrogen sulfide with 2,475 ppb from night soil treatment facility. Hydrogen sulfide was the most influential compound of malodor based on odor quotient index. The average dilution threshold of odor was 923 at grit-chamber and 1,267 at night soil treatment facility. The removal efficiency of odorous compounds from sewage treatment facility were more than 94% using polyurethane foam biofilter within empty bed contact time 3sec. The emitted concentration to the atmosphere was satisfied with the criterion of the offensive odor control law.
        4,000원
        1 2 3