고밀도폴리에틸렌(HDPE)은 대표적인 열가소성 플라스틱으로서 재활용성, 내충격성 등이 우수하여 차세대 친환경 소형선박용 재료로 각광받고 있다. 그러나, HDPE의 열변형온도는 하절기의 선체 온도와 비슷한 수준이며, 재료의 열팽창 특성으로 인해 선박 구조용 재료로서의 적용 가능성에 대한 기술적 검토가 필요하다. 본 연구에서는 선박이 일상적으로 겪을 수 있는 상온 이상 온도범위에서 HDPE 의 기계적·열적 물성치를 도출하였고, 모의설계한 HDPE 어선을 대상으로 연중 태양복사열과 기관실 내부 온도가 가장 높은 하절기 운용 상황을 모사한 열전달 해석을 통해 구조부재들의 온도변화 및 분포, 응력 및 변위 구배 등을 확인하고자 하였다. 혹서기의 높은 기온과 강한 태양복사에 노출되는 HDPE 선체의 온도는 재료의 열변형온도 수준까지 상승하며 열팽창에 의한 변형 및 국부응력을 보여 설계 및 검토단계에서 선체 변형을 고려할 필요가 있고 향후 선체변형 대응방안 및 구조안전성 평가기준 마련 시 온도상승에 따른 물성치 변화를 고려할 필요가 있다.
High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.
High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker’s hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.
We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700oC and 1900oC for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.
Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 μm; however, this value drops to 914 and 529 μm with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the asextruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.
EMI(Electro Magnetic Interference) is a very important factor to consider in electronic equipment. For EMI coating, it is applied to the sputtering electronic equipment housing made by PEEK. The question arises that there may be physical changes in the PEEK material due to heat generated during sputtering. During sputtering inside the chamber, the degree of temperature due to the heat was measured indirectly, and characteristics such as bending capacity, tensile strength, impact strength, flexural strength were measured to understand physical changes. Tensile strength and the flexural strength increased by 14.5 to 18 compared to the base group. And the impact strength of the un-notched specimens was increased. Overall, there has been no change in the physical properties of PEEK due to heat generated during sputtering deposition.
In this study, three kinds of bainitic steel plates are manufactured by varying the chemical compositions and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room and low temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone (HAZ) specimens are fabricated by a simulation of welding processes, and the HAZ microstructure is analyzed. The base steel that has the lowest carbon equivalent has the highest volume fraction of acicular ferrite and the lowest volume fraction of secondary phases, so the strength is the lowest and the elongation is the highest. The Mo steel has a higher volume fraction of granular bainite and more secondary phases than the base steel, so the strength is high and the elongation is low. The CrNi steel has the highest volume fraction of the secondary phases, so the strength is the highest and elongation is the lowest. The tensile properties of the steels, namely, strength and elongation, have a linear correlation with the volume fraction of secondary phases. The Mo steel has the lowest Charpy impact energy at -80 oC because of coarse granular bainite. In the Base-HAZ and Mo-HAZ specimens, the hardness increases as the volume fraction of martensite-austenite constituents increases. In the CrNi-HAZ specimen, however, hardness increases as the volume fraction of martensite and bainitic ferrite increases.
In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the γ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.
RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.
P/M high speed steel (1.26% C, 4.42% Cr, 6.54% W, 4.92% Mo, 3.21 % V, 8.77% Co, bal. Fe) was applied to hot former die. It showed that the die life became 2.7 times higher than that of cast/wrought SKH 55 tool steel which is commercially used. The increase of die life was corresponding to the improved hardness and transverse rupture strength of PM high speed steel due to the finer grain and carbide as well as the uniform carbide distribution. The P/M high speed steel with the promoted die life could be an alternative to the conventional SKH55.
FGM은 원하는 물성의 점진적인 변화를 통해 재료에 다양한 특성을 확보할 수 있는 방법이다. 여러FGM의 제조 방법 중 분말야금법과 열용사법이 많이 사용되며, FGM적용은 열ㆍ기계적 물성이 요구되는 응용분야에서 가장 전망이 있고 현재 가장 많은 연구가 진행되어 왔다. 경사기능의 도입은 2층 구조의 재료에 비하여 열팽창 계수의 차이에 의한 층간 잔류응력 집중을 완화 시켜 접합 강도와 열 충격 특성 및 열피로 특성 등의 향상을 가져왔다. 그러나 120 이상
Highspeed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.