This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
This study evaluates the potential of various coagulants to enhance the efficiency of total phosphorus removal facilities in a sewage treatment plant. After analyzing the existing water quality conditions of the sewage treatment plant, the coagulant of poly aluminium chloride was experimentally applied to measure its effectiveness. In this process, the use of poly aluminium chloride and polymers in various ratios was explored to identify the optimal combination of coagulants. The experimental results showed that the a coagulants combination demonstrated higher treatment efficiency compared to exclusive use of large amounts of poly aluminium chloride methods. Particularly, the appropriate combination of poly aluminium chloride and polymers played a significant role. The optimal coagulant combination derived from the experiments was applied in a micro flotation method of real sewage treatment plant to evaluate its effectiveness. This study presents a new methodology that can contribute to enhancing the efficiency of sewage treatment processes and reducing environmental pollution. This research is expected to make an important contribution to improving to phosphorus remove efficiency of similar wastewater treatment plant and reducing the ecological impact from using coagulants in the future.
The ballasted flocculation effects of the mill scale and magnetite on activated sludge were investigated. Both ballasted flocculants (BF) could remarkably improve the sludge settleability in terms of zone settling velocity (ZSV) and sludge volume index (SVI). With the BF dosage of 0.2 to 2.0 g-BF/g-SS, the magnetite particles showed better efficiency on improving settling behavior of activated sludge than the mill scale due to higher surface area and hydrophobic property. The efficiency of SVI30 with magnetite injection was 2.5 to 11.3% higher than mill scale injection and that of the ZSV appreciated from 23.7% to 44.4% for magnetite injection. Averaged floc size of the BF sludge with magnetite dosage (0.5 g-BF/g-SS) was 2.3 times higher than that of the control sludge. Dewaterability of the sludge was also greatly improved by addition of the BF. The specific resistance to filtration (SRF) was reduced exponentially with increasing the dosage of BF. However, the BF’s particle size effect on the SRF looks to be marginal. Consequently, for improving the dewaterability, the BF played a physical role to remove the pore water of the biological flocs by intrusive attachment and a chemical role to induce aggregation of the flocs by charge neutralization.
The effects of activated carbon originated Ballasted Flocculant (BF) on the settleability of activated sludge and the recovery of BF by Hydro-cyclone (HC) were analyzed experimentally. Two kinds of BF (M-I: 125-250 μm, M-II: 250-425 μm in dia.) and three kinds of activated sludges with different SS concentration (2,300-7,100 mg/L) were applied for this study. With the dosage variation of BF from 0.14 to 1.3 g-BF/g-SS, we could obtain 24-31% improvement in SV30 (Sludge Volume after 30min sedimentation) for the lowest SS concentration sludge (2,300 mg/L). Whereas the SV30 improvement was much higher as 44-48% for the highest SS concentration sludge (7,100 mg/L). The settling characteristics of the sludge with BF followed Vesilind model the best among three models (Vesilind, Takacs and Cho model). HC could effectively separate BF with the separation efficiency of 70-90% and over 95% separation efficiency could be obtained when the HC was applied twice.
Microalgae are primary producers of aquatic ecosystems, securing biodiversity and health of the ecosystem and contributing to reducing the impact of climate change through carbon dioxide fixation. Also, they are useful biomass that can be used as biological resources for producing valuable industrial products. However, harvesting process, which is the separation of microalgal biomass from mixed liquor, is an important bottleneck in use of valorization of microalgae as a bioresource accounting for 20 to 30% of the total production cost. This study investigates the applicability of sewage sludge-derived extracellular polymeric substance (EPS) as bioflucculant for harvesting microalgae. We compared the flocculation characteristics of microalgae using EPSs extracted from sewage sludge by three methods. The flocculation efficiency of microalgae is closely related to the carbohydrate and protein concentrations of EPS. Heat-extracted EPS contains the highest carbohydrate and protein concentrations and can be a best-suited bioflocculant for microalgae recovery with 87.2% flocculation efficiency. Injection of bioflocculant improved the flocculation efficiency of all three different algal strains, Chlorella Vulgaris, Chlamydomonas Asymmetrica, Scenedesmus sp., however the improvement was more significant when it was used for flocculation of Chlamydomonas Asymmetrica with flagella.
To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 m3/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision–making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 – 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.
Sulfide dissolved in wastewater is a potential source of hydrogen sulfide. Hydrogen sulfide is an odorous substance that causes civil complaints and is a dangerous substance that threatens the corrosion of structures and the safety and health of workers. The removal efficiencies of the chemical oxidant and the coagulants were compared to evaluate the removal of dissolved sulfide. Since the effectiveness may vary depending on the characteristics of the wastewater, water was used as a control, and 5 mg/L of dissolved sulfide was dissolved in water and sewage wastewater. When oxidant was used, the results showed a high sulfide removal rate in sewage wastewater than water, and the removal efficiency was enhanced with increasing oxidant concentration. Sulfide removal efficiencies after one hour after injecting oxidants H2O2, NaOCl, NaClO2 to sewage wastewater were 70%, 90%, and 100%, respectively. After the oxidants were administered four times, the removal was 90%, 100%, and 100%, respectively. In the case of sulfide removal with the oxidizing agent, the removal efficiency was NaClO2, NaOCl, H2O2 (highest - lowest). NaClO2 showed 100% removal efficiency within 10 minutes under all conditions (A condition, B condition), making it the most sewage effective agent in this study. In the case of the coagulants, 100% of the sulfides dissolved in water were removed in the first 10 minutes under all conditions. In sewage wastewater, FeCl2 and FeSO4 also showed 100% removal efficiency under all conditions after one hour, and FeCl3 showed 90% and 99% removal rates under A and B conditions, respectively. That is, the monovalent iron coagulants (FeCl2, FeSO4) were found to be somewhat more effective in the removal of sulfides in sewage wastewater than the divalent iron (FeCl3) coagulants. When the sulfides were removed with coagulants, FeCl2 had the highest removal efficiency followed by FeSO4 and FeCl3. Moreover, it was found that NaClO2 has the best reaction efficiency at the minimum reaction time and the reaction concentration.
원전사고 및 시설보수 과정에서 방출되는 방사성물질 중 137Cs은 토양의 주 오염원 중 하나이다. 세슘으로 인한 토양오염은 주민의 거주 및 공업용지로의 재사용을 위해 제염이 불가피하다. 본 연구에서는 다양한 토양복원 기술 중 국내·외에서 실 제 방사성물질로 오염된 토양에 적용한 사례가 있는 토양세척 기술을 선정하였다. 토양세척 공정은 세척제를 사용하여 토양 과 세슘의 표면장력을 약화시켜 토양과 세슘을 분리하는 원리이다. 이러한 토양세척 공정의 세척수 재사용을 통해 공정효율 을 높이고자 세척수에 응집제를 적용하여 미세토양 및 세슘의 제거 성능 실험을 수행하였다. ICP-OES를 통해 세슘 수용액 에 토양을 첨가하여 세슘을 흡착시킨 후 응집제를 첨가하여 세슘의 농도를 측정하였으며 응집제 적용시 최대 세슘 제거율은 약 88%, 최소는 67%였다. Visual MINTEQ Code를 통한 세슘과 토양과의 종결합을 예측하였으며 탁도 측정을 통해 응집제 투여 후 탁도를 측정하여 세척수의 재사용 여부 및 미세토양 제거율을 분석하였다.
With the concerns of global climate change, the significant changes in rainfall patterns have aggravated the occurrence of pollutants from agricultural uplands. Heavy and intensive rainfalls have rinsed a variety of pollutants off the land, sending them into the neighboring water environments which further causes water pollution problems. Recently, the application of PAM(Polyacrylamide) in agricultural lands has gotten much attention for soil conditioning. Therefore, this study aimed to develop the automatic control system applying the chemical flocculant, liquid PAM in order to flocculate the suspended solids and deposit at the bottom of farmland water channel, so eventually minimize the amount of non-point pollutants discharged into receiving water. The optimum feed rate for liquid PAM was calculated through the experiment in artificial water channel and applied to the control system. As the results of the performance test of the automatic turbid water control system installed in the sloped field, the range of turbidity reduction rate was 25 to 33% with the average turbidity of 292 to 498 NTU in water channel.
현 국제해사기구(IMO)에서의 선박엔진에서 발생되는 NOx와 SOx 등의 연소 가스 배출에 대한 규제 강화에 따라, 발트 해 연안을 지나는 모든 선박들은 배출되는 연소가스 저감장치를 장착해야 된다. 국내에서도 IMO의 규제에 따른 NOx와 SOx를 저감장치를 개발하고 있으며, 그중에 대표적인 장 치인 Scrubber는 세정액으로 암모니아수와 요소수를 사용하게 되고 사용된 폐 세정액에는 NOx와 SOx 와 반응한 질산암모늄과 황산암모늄이 포함되어 있다. 본 연구에서는 폐 세정액이 포함하고 있는 유용한 부산물을 유기용매를 사용하는 염석법을 적용하여 회수하였다. 질산암모늄과 황산암모늄의 회수방법과 질안석회를 추출 후 회수된 부산물의 정성분석을 위하여, FT-IR 분석을 통하여 물질의 정성적 특성과 화학적 조성을 평가해 보았다. 한편 응집제를 투입하여 질안석회를 침전시켜 비료상의 물질로 회수하였 다. FeSO4 응집제와 CaCl2를 응집보조제로 사용하고 입자의 크기를 키우기 위해 CaCO3를 사용하였다.
In this paper, the performance of a synthetic fiber filter aimed at high-speed operation and dosed with different coagulants or filter aids was investigated. Without a coagulant, the filter efficiency was about 62% which was greatly enhanced when three types of coagulants namely PAC, Alum, and FeCl3 were used. Among the coagulants tested, PAC was the most effective, giving 91% filter efficiency, followed by Alum with 90%, and FeCl3 with 78%. PAC worked effectively at a very small range of dose, but Alum was relatively effective in a wide range of concentration. Compared with PAC and Alum, FeCl3 provided more or less contant efficiency regardless of its dose but gave the poorest filter efficiency. Moreover, as the inflow turbidity increased, headloss increased and the efficiency decreased at any dose and type of coagulant. The headloss recorded in this particular synthetic fiber filter is not significant as compared to that observed in typical granular filters. The recovery of solids estimated after filter cleaning was about 80% for both PAC and Alum, but poorer at 72% in the case of FeCl3 due to the heavy and large floc characteristics. The recurrence of filter efficiency verified through repetitive filter runs was found to be satisfactory.
Modified coagulants were investigated for the removal of phosphorus from secondary effluent of wastewater treatment. The modified coagulants were prepared by mixing alkali earth metal ions such as calcium and magnesium. The basicity of a coagulant influenced on the removal of phosphorus, and coagulants with basicity of 5.9% showed a better removal of total phosphorus than that of 38.5%. Also, coagulants with alkali earth metals enhanced the performance of coagulation by 10% and resulted in 67.1% for total phosphorus removal. Moreover, the removal of suspended solids and chemical oxygen demand was improved using coagulants with low basicity and earth metal ions. Results of this study demonstrated that the use of coagulants with low basicity, and calcium and magnesium ions is recommended to improve wastewater effluent quality.
Control degree and property changes of dissolved organic matter (DOM) were conducted by coagulation of chemical treatment for 2 sewage treatment plants with different technical methods. As the result, SUVA value of the second treated water (supernatant of the second settling pond after biological treatment) was increased and DOC was reduced in comparison with supplied raw water. And, SUVA value and DOC were reduced by coagulation after coagulation treatment of the second treated water. Properties of dissolved organic matter for 2 sewage treatment plants's DOC were divided. As the result, there was lots of hydrophilic component with hydrophilicity in case of plant A. In case of the second treated water, Plant A showed fulvic acid with little molecular weight was reduced among the hydrophobic component with hydrophobicity, but numic acide with lots of molecular weight was increased. However, in case of plant B, both fulvic acid with little molecular weight and humic acid with lots of molecular weight were increased among the hydrophobic components with hydrophilicity. Before the operation of phosphorus facility, properties of dissolved organic matter after biodegradation with effluent water showed hydrophilic components were reduced and hydrophobic components were increased. However, after coagulation treatment of the second treated water, hydrophilic components and hydrophobic components were outstandingly decreased or increased. During the biodegradation after coagulation treatment, hydrophilic components were significantly decreased and hydrophobic components were increased.
분리막 생물반응조내 침지형 평막(공칭공경 0.15 ㎛, CPVC)을 사용하여 운전방식에 따른 막 오염 저감효과를 알아보았다. 또한 SMP, EPS와 같은 입자성 물질을 플록으로 형성시켜 장기운전을 가능하게 하였다. 운전방식은 기존 운전/휴지 방식과 연속적으로 처리수를 생산할 수 있도록 자체 개발한 사인파형 투과유속 연속운전(Sinusoidal flux continuous operation; SFCO)을 적용하였다. 응집제를 투여한 경우 기존 운전/휴지방식에 비하여 SFCO의 TMP는 최대 30% 미만으로 유지됨을 확인할 수 있었다.
The determining the appropriate dosage of coagulant is very important, because dosage of coagulant in the coagulation process for wastewater affects removing the amount of pollutants, cost, and producing sludge amount. Accordingly, in this study, in order to determine the optimal PAC dosage in the coagulation process, CCD (Central composite design) was used to proceed experimental design, and the quadratic regression models were constructed between independent variables (pH, influent turbidity, PAC dosage) and each response variable (Total coliform, E.coli, PSD (Particle size distribution) (‹10 μm), TP, PO4-P, and CODcr) by the RSM (Response surface methodology). Also, Considering the various response variables, the optimum PAC dosage and range were derived. As a result, in order to maximize the removal rate of total coliform and E.coli, the values of independent variables are the pH 6-7, the influent turbidity 100-200 NTU, and the PAC dosage 0.07-0.09 ml/L. For maximizing the removal rate of TP, PO4-P, CODcr, and PSD(‹10 μm), it is required for the pH 9, the influent turbidity 200-250 NTU, and the PAC dosage 0.05-0.065 ml/L. In the case of multiple independent variables, when the desirable removal rate for total coliform, E.coli, TP, and PO4-P is 90-100 % and that for CODcr and PSD(‹10 μm) is 50-100 %, the required PAC dosage is 0.05-0.07 ml/L in the pH 9 and influent turbidity 200-250 NTU. Thus, if the influent turbidity is high, adjusting pH is more effective way in terms of cost since a small amount of PAC dosage is required.
본 연구에서는 MBR 내에 침지된 분리막 오염을 평가하기 위하여 운전시간에 따른 막간차압(TMP)을 측정하였 다. 유효 막면적이 0.02 m2이고 공칭 세공크기가 0.15 μm인 정밀여과용 평막 모듈을 MLSS 5,000 mg/L인 활성슬러지 용액 에 침지시켰다. 운전/휴직(R/S) 및 사인파형 투과유속 연속운전(SFCO) 방식에 따른 TMP를 비교하기 위하여 동시에 투과 실 험을 수행하였다. SFCO 운전방법에 따른 TMP는 R/S에 비하여 최대 93% 낮게 유지되었으며 투과유속이 증가함에 따라서 TMP 감소 효과는 줄어들었다. 또한 응집제인 FeCl3를 활성슬러지 용액에 500 mg/L 농도로 주입시키면 SCFO 운전방식의 경우, 투과 운전시간을 5배 이상 증가시켜도 한계 운전 TMP인 55 kPa의 40% 미만으로 유지됨을 확인할 수 있었다.
The purpose of this study is to get basic data for the application of coagulants for treating an industrial wastewater containing NBD COD. The NBD COD concentration of the target wastewater was calculated to be 61 mg/L, which was about 72% of the first stage treated water, and this shows that there must be advanced wastewater treatment process. When Alum(8%) was injected in raw the water, 150ppm was the best dosage and 41% CODmn removal efficiency was obtained. When Alum(8%) was injected in the discharge water, 150ppm was the best dosage, and 19% CODmn removal efficiency was obtained. When powdered activated carbon was injected, 40ppm was the best dosage, 26% CODmn removal efficiency was obtained. The method of injecting Alum(8%) in the discharge water was suitable, when the effluent exceeds the water quality standard by 20%, and the method of injecting the powdered activated carbon was suitable, when the effluent exceeds the water quality standard by 20~40%.
Lactobacillus jensenii YW-33이 생산하는 생물응집제의 활성본체를 규명하고자 응집물질을 분리, 정제하고 그 특성을 검토하고자 하였다. 생물응집제의 활성 본체를 조사하기 위하여 배양액을 원심분리하여 균체 자체와 균체를 제거한 상등액을 비교한 결과 균체를 제거한 상등액이 86%로 높은 응집활성을 나타냈다. 또한 pronase 처리와 periodate 산화를 행한 결과 pronase로 처리한 시료는 무처리군과 비교하여 차이가 없었던
본 연구에서는 침지형 MBR 공정에서 인제거를 위해 주입되는 응집제가 분리막의 여과성능에 미치는 영향을 알아보고자 하였고, 침지형 MBR에서 분리막 표면의 오염을 방지하기 위해 연속적으로 행하는 폭기가 응집 플록에 미치는 영향을 조사하고자 하였다. 이를 위해 MBR공정의 폭기조 슬러지를 채취하여 jar-test를 실시한 결과와 비교하였다. 실험 결과는 플록 크기와 슬러지 탈수성의 지표로서 비여과저항(SRF, Specific Resistance of Filtration)을 측정하여 비교하였다. 응집제 주입량이 증가할수록 10μm 수식 이미지 이하의 플록의 비율이 저감되었으며 탈수성이 증가하였다. 그러나 jar-test 결과와 비교하였을 때, 폭기의 전단력에 의해 그 효과가 저감된 것을 알 수 있었다. 응집제를 주입한 경우 주입하지 않은 경우보다 운전지속시간이 연장되었다 운전지속시간이 응집제 주입량에 비례하여 증가하지는 않았는데, 이는 연속적인 폭기의 전단력으로 인해 10μm 수식 이미지 이하의 입자가 충분히 저감되지 않았기 때문인 것으로 생각된다. 또한 응집제 주입량이 과도하면 오히려 여과저항을 증가시키는 결과를 초래하는 것을 알 수 있었다.