Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.
Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5–24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.
Iron oxide (Fe2O3) nanoclusters exhibit significant potential in the biomedical and pharmaceutical fields due to their strong magnetic properties, stability in solutions, and compatibility with living systems. They excel in magnetic separation processes, displaying high responsiveness to external magnetic fields. In contrast to conventional Fe2O3 nanoparticles that can aggregate in aqueous solutions due to their ferrimagnetic properties, these nanoclusters, composed of multiple nanoparticles, maintain their magnetic traits even when scaled to hundreds of nanometers. In this study, we develop a simple method using solvothermal synthesis to precisely control the size of nanoclusters. By adjusting precursor materials and reducing agents, we successfully control the particle sizes within the range of 90 to 420 nm. Our study not only enhances the understanding of nanocluster creation but also offers ways to improve their properties for applications such as magnetic separation. This is supported by our experimental results highlighting their size-dependent magnetic response in water. This study has the potential to advance both the knowledge and practical utilization of Fe2O3 nanoclusters in various applications.
In this study, the safety aspects were studied by comparing the charge control characteristics of the two vehicles when a failure occurs between the OBC including the charging port or the charging door module (CDM) during slow charging using the In Cable Control Box (ICCB) for a long time.When the AC terminal was momentarily disconnected during charging, the Model-3 vehicle was charged normally if the AC circuit was disconnected up to three times, and the charging control was stopped when the number of disconnects reached four times. However, in the Ioniq-5 vehicle, charging control was normally performed when the disconnected AC circuit was normally connected regardless of the number of disconnection.
Most of the steam turbine control valves used for the fossil and nuclear power plants operation in South Korea were developed by GE (General Electric) and manufactured by DHIC (Doosan Heavy Industry Company). For may years, DHIC have tried to develop their own technologies related to the power generation. DHIC has launched many R&D projects and ‘Development of a Control Valve Flow Code for Steam Turbine Operation Control of Fossil Power Plant’ was one of the R&D projects. Through our project, we accomplished the experimental method to obtain a steam turbine control valve characteristic curve using the atmospheric air and the reduced model instead using the steam and the real model. Also, we developed the correction method to calculate the real steam mass flow rate from the characteristic curve obtain by the experiment. In this paper, the effectiveness of the correction method was reviewed and it was concluded that the corrected mass flow rate complies well with the real steam mass flow rate.
In this study, we compared of control characteristics at two-stroke marine diesel engine by MAN B&W. It was found that MC and ME type of engine largely divide fuel injection & exhaust valve actuator by cam-shaft controlled and electro-hydraulic controlled. Computer based type of engine ME-B type is only operated exhaust valve by driving camshaft, the fuel injection system is fuel oil booster and ELFI valve by Electro-hydraulic. ME-C type is composed of a multi-way valve or FIVA valve. Therefore fuel injection system and exhaust valve system is operated by Electro-hydraulic. ME type engine was shown that the optimization of the combustion process can be achieved for any load on the engine by Electro-hydraulic control system according to the computer based.
We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700oC and 1900oC for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.
리튬 덴드라이트의 효과적인 억제를 위해 유/무기 복합체를 리튬메탈 전극의 보호층으로 사용하였다. 유기물로는 PVDF-HFP가 사용되었으며 무기물로는 TiO2가 사용되었다. 유기물로 사용된 PVDF-HFP는 높은 유연성을 가지는 고분자로서 무기물의 matrix 역할을 하며, 무기물로 사용된 TiO2 나노입자는 보호막의 기계적 강도와 이온전도성을 향상시켜주는 역할을 하였다. 합성된 보호막은 SEM, AFM, XRD를 통하여 PVDF-HFP matrix에 TiO2가 잘 분산되어 있는 형태인 것을 확인할 수 있 었다. 또한 전기화학적 분석 결과, 향상된 기계적 물성과 이온전도성으로 인해 polymer-inorganic composite은 비교 샘플(untreated 와 PVDF-HFP 보호층) 대비 100번째 사이클까지 80%의 높은 쿨롱 효율 및 20 mV 미만의 낮은 과전압을 나타내었다.
A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at 500 ℃ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.
The 3-way valve have been used as a valve for opening and closing the valve by the flow control in the pressure system of the cryogenic and high pressure environment. In this paper, numerical analysis and experimental study on fracture nipple of 3-way ultra high pressure valve applied to space launch vehicle was carried out. We have developed a 3-way valve numerical simulation modeler of cryogenic environment using commercial software ANSYS 18.2. As results of numerical analysis, optimum nipple condition was derived. In addition, a 3-way valve prototype was fabricated and the fracture test was performed and compared with the numerical analysis results.
In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.
We report the feasibility of TaC production via self-propagating high temperature synthesis, and the influence of the initial green compact density on the final composite particle size. Experiments are carried out from a minimum pressure of 0.3 MPa, the pressure at which the initial green body becomes self-standing, up to 3 MPa, the point at which no further combustion occurs. The green density of the pellets varies from 29.99% to 42.97%, as compared with the theoretical density. The increase in green density decreases the powder size of TaC, and the smallest particle size is observed with 1.5 MPa, at 10.36 μm. Phase analysis results confirm the presence of the TaC phase only. In the range of 0.3-0.5 MPa, traces of unreacted Ta and C residues are detected. However, results also show the presence of only C residue in the matrix within the pressure range of 0.6-3.0 MPa.
이산화탄소 배출량 제한을 의무화하는 EEDI, SEEMP 등의 국제협약에 대응하기 위하여 선박의 에너지 절감장치(ESD, Energy Saving Device) 관련 국내기술 대응이 절실하다. 본 연구는 국내 중소형 조선소의 주력선종 효율 향상의 ESD를 설계하기 위하여 유동특성 분석에 대한 연구이다. 프로펠러 상단으로 유입되는 유동을 개선하기 위하여 bare hull의 선미벌브 및 빌지 주변의 유동특성을 수치해석과 모형시험을 통하여 정성적으로 분석하였으며, 선저압력 지점의 개선 및 프로펠러 상단 유입의 선미 빌지 유동 제어를 위하여 선미벌브와 빌지 사이에 수직평판을 부착하였다. 선미 선체표면 압력회복으로 전저항이 약 3.04 % 감소하였으며, 프로펠러 상단 유동 제어를 통해 평균 공칭반류가 약 18.8 % 감소하였다.
본 연구는 인공광 이용형 식물공장에서 common ice plant를 재배하였을 때 생육에 대한 적합한 배양액 조성, 배양액 산도, 급액 간격, 광도 및 재식거리를 알아보고자 수행되었다. 식물공장 유형은 완전제어형 식물공장형태로 인공광원은 삼파장 형광등을 사용하였으며, 광주기는 12시간 일장주기였다. 수경재배시스템은 3단으로 구성된 박막수경시스템이었다. 식물공장내 온도, 상대습도와 이산화탄소 농도는 ON/OFF 제어하였다. 배양액은 일본원예시험장액과 식물체 분석으로 개발 배양액을 가지고 비교 실험 하였다. 배양액의 산도와 급액 간격 실험은 pH 6.0과 7.0 그리고, 5분 간격과 10분 간격으로 순환할 경우 생육 차이를 알아보았다. 광도는 90과 180μmol·m-2·s-1 2처리 하였다. 재식거리는 열간 간격을 15cm로 고정한 후, 열내 간격 10cm, 15cm, 20cm와 25cm 4처리로 처리하였다. 적당한 배양액의 조성은 N 7.65, P 0.65, K 4.0, Ca 1.6과 Mg 1.0mM·L-1이었다. 지상부 생체중과 건물중은 pH 6과 7 그리고 5분 간격과 10분 간격 처리간의 유의적인 차이는 없었다. 지상부 생체중과 건물중은 광도 180μmol·m-2·s-1에서 높았다. 재식 거리가 증가할수록, 단위면적당 생체중과 건물중은 감소 하는 경향을 보였다. 식물 생산 시스템에서 common ice plant 생육에 적합한 배양액 관리(조성, pH와 급액간격) 와 재배관리(광도와 재식밀도)를 알아본 결과, 생육에 적합한 배양액 조성으로 pH 6.0-7.0로, 급액 10분 간격 으로 공급해 주는 것이 좋으며, 광도 180μmol·m-2·s-1와 재식밀도 15×15cm로 재배하는 것이 좋을 것으로 판단 된다.