In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.
Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.
Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.
This study develops finite element models for seismically-deficient reinforced concrete building frame retrofitted using fiber-reinforced polymer jacketing system and validates the finite element models with full-scale dynamic test for as-built and retrofitted conditions. The bond-slip effects measured from a past experimental study were modeled using one-dimensional slide line model, and the bond-slip models were implemented to the finite element models. The finite element model can predict story displacement and inter-story drift ratio with slight simulation variation compared to the measured responses from the full-scale dynamic tests.
Seismic performance of ordinary reinforced concrete shear wall systems commonly used in high-rise residential buildings is evaluated. Three types of shear walls exceeding 60m in height are designed by performance-based seismic design. Then, incremental dynamic analysis is performed collapse probability is assessed in accordance with the procedure of FEMA P695. As a result, story drift, plastic rotation, and compressive strain are observed to be major failure modes, but shear failure occur little. Collapse probability and collapse margin ratio of performance groups do not meet requirement of FEMA P695. It is observed that critical wall elements fail due to excessive compressive strain. Therefore, the compressive strain of concrete at the boundary area of the shear wall needs to be evaluated with more conservative acceptance criteria.
본 연구에서는 옹벽 구조물의 내진성능 평가를 위해 2차원 유한요소 해석을 수행하였다. 2차원 유한요소 모델은 실제로 시공된 옹벽 구조를 기반으로 2차원 평면변형 요소로 모델링되었으며, 지반은 각각 유한요소와 무한요소로 모델링 하였다. 지진하중은 총 38개의 인공 지진을 생성하여 사용하였고, 생성된 인공 지진파를 11개의 PGA로 나누어 총 418회의 시간이력해석을 수행하였다. 수치해석 결과를 바탕으로 옹벽 구조물의 지진에 대한 취약도를 분석하였다. 취약도 분석 결과 콘크리트 및 철근의 취약도 곡선이 낮은 PGA 수준에서 급격히 변하는 것을 관찰할 수 있었다. 유한요소 해석 결과를 바탕으로 실제 현장의 옹벽 구조에서 상대적으로 낮은 수준의 지진파가 발생하더라도 높은 파괴확률로 인해 지진에 상대적으로 취약함을 확인하였다.
A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.
최근 빈번하게 발생하고 있는 이상기후에 의한 기상재해로 온실의 피해가 크게 발생하고 있다. 이에 자연재해가 발생하는 근본적인 요인인 기상과 이상기후 현상에 대한 정량적인 분석을 통해 시설재배에 취약한 지역을 검토하여 피해를 사전에 최소화할 수 있는 대책수립 및 관리가 필요하다. 본 연구에서는 전라도 지역을 대상으 로 시설재배의 기상재해와 관련된 대리변수를 산정하여 기상재해에 의한 시설재배의 취약지역을 분석하였으며, GIS를 이용하여 공간적인 분포분석을 통해 기상재해에 취약한 시설재배지역을 지도로 나타내었다. 그리고 본 연구에서 작성된 시설재배의 취약지도와 대상지역에서 발생된 온실의 실제 재해기록과 비교 검토하였다. 본 연구에서 최종적으로 작성된 기상재해에 대한 시설재배 취 약지도와 실제 온실의 피해기록을 비교해보면, 광주광역시, 나주시, 영암군, 장성군, 함평군 그리고 해남군 등 대상지역의 약 50% 정도가 본 연구의 취약지도와 실제 재해기록과 일치하는 경향이 나타났다. 이에 반해 군산시, 김제시, 목포시 그리고 무안군 등은 기상조건이 취약등급에 포함이 됨에도 불구하고 재해피해가 낮게 나타났다. 이러한 결과는 지역에 따라 다른 온실의 구조적인 설계 및 관리측면이 변수로 작용한 것으로 판단된다. 본 연구에서는 온실의 자연재해의 주요 원인인 기상자료를 분석하여 기상재해에 대한 시설재배의 취약지도를 작성 하였고, 과거 재해기록과 비교하여 대상지역 내에서 취약한 지점을 확인하였다. 이 연구는 온실의 설계 및 관리측면에서 기상재해에 의한 피해를 경감 및 예방하기 위한 기초자료를 제공할 수 있을 것이다.
In recent years, the number of earthquakes has increased worldwide. There has been an extreme increase on the Korea Peninsula, which is considered a safety zone for earthquakes. In particular, in the event of earthquakes, most structures on the Korea Peninsula are severely damaged, because most are not designed to withstand them. Damage to and destruction of civil structures, such as bridges, nuclear facilities, and dams, is worse than that of other structures. It is necessary to evaluate and predict the extent of damage by earthquake magnitude, as the magnitude of earthquakes is increasing as well as the frequency. A major feature of the occurrence of earthquakes is uncertainty. For this reason, it is necessary to adopt a stochastic approach, and studies using this approach are increasing. However, although there have been several studies on bridges and nuclear facilities, there have been few studies on probabilistic seismic risk evaluation for multi-functional weirs. Thus, this study presents 3D multi-functional weirs and performs a time history analysis by using LS-DYNA, a general structure analysis program. Probabilistic seismic fragility assessment is conducted by Monte Carlo simulation.
In this study, refined finite element (FE) analyses intended to evaluate the capacity of the existing water purification plant structures against seismic force are conducted with an aim to predict possibility generating tension crack and compression crushing. The FE models for three types of main plant structures were constructed to take ground condition, boundary condition, and water interaction into consideration for advanced simulation. The nonlinear dynamic analyses were performed by using ground motion data which have been used for seismic design. Both compression crushing and tention crack, which are distributed over concrete plant structures during peak ground acceleration (PGA), are investigated by analyzing failure possibility controlled with the strain limits. After observing FE analysis results, it is possible to predict tenstion cracking which can be found at some parts of the main structure.
If scour is occurred at shallow foundation of bridge, seismic performance of the bridge will be reduced. In order to evaluate accurate seismic response of bridge according to scour depths, modeling of foundation reflecting scour effect is important. In this study, taking into account the effect of the reduction in embedment depth of the shallow foundation by scouring, the soil around the foundation is modelled as an equivalent soil spring with various stiffness. Seismic fragility analyses for 3 types of bridges subjected to 4 types of ground motions classified into Site Class A, B, C, D are evaluated according to several scour depths. From the fragility analysis results, it can be observed that the deeper the scour depth, the higher probability of exceeding damage states. Also, seismic failure probability of asymmetric bridge is higher than that of symmetric bridge.
In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.
일반적으로 지진취약도를 평가할 때 사용되는 해석방법 중 하나인 역량스펙트럼 방법은 증분동적해석에 비해 해석의 정확성이 떨어지는 제한점이 있다. 본 연구에서는 증분동적해석이 가장 정확도가 높은 해석기법이라는 점에 착안하여 증분동적해석을 이용한 지진취약도 곡선의 도출과정을 제안하였다. 타당성 비교를 위하여 역량스펙트럼 방법과 제안된 방법으로 도출한 취약도 곡선을 비교하여 두 해석기법에 의한 지진취약도 곡선의 경향을 분석하였다. 그 결과 Slight damage와 Moderate damage의 경우 두 해석방법이 유사한 곡선 경향을 보이나 Extensive damage와 Complete damage의 경우에는 IDA방법에 의한 곡선이 더 가파른 경향을 보였다. 이는 구조물의 거동을 이상화하여 극한점 이후 구조물의 저항 강도가 떨어지지 않는다고 가정하는 역량스펙트럼 방법의 영향을 받는 것으로 사료된다.
본 연구에서 피뢰기의 지진취약도 해석은 역량스펙트럼 방법을 이용하여 수행하였다. 많은 구조부재를 가진 구조물의 지진취약도 해석은 수십 혹은 수백 개의 지진하중에 대한 비탄성 지진응답을 계산하는 것이 요구되기 때문에 역량스펙트럼 방법과 같은 간단한 방법이 응답이력해석 보다 적합하다. 일반적으로 역량스펙트럼 방법에 의해 평가된 지진응답의 정확성은 응답이력해석에 의한 결과의 정확성 보다 떨어진다. 역량스펙트럼 방법의 정확성을 향상시키기 위하여 등가단자유도 방법과 성능점 계산기법이 적용되었다. 지진취약도에 대한 지진에 대한 지반효과를 평가하기 위하여 60개의 다른 지반종류의 지반운동을 입력지진으로 선정하여 사용하였다. 역량스펙트럼 방법과 응답이력해석에 의한 지진취약도 곡선의 비교로부터 역량스펙트럼 방법에 의한 지진취약도 곡선이 응답이력해석에 의한 지진취약도 곡선과 상당히 유사함을 알 수 있었다. 또한, 피뢰기의 주된 지진에 의한 파괴모드는 부싱의 파손임을 알 수 있었다.
본 연구에서는 비선형 유한요소 해석 기법을 적용한 격납건물의 내압취약도 평가를 수행하였다. 대상 구조물은 국내 대표적인 가압경수로형 원전 격납건물 중 하나로 하였다. 비선형 극한내압 해석을 위해 대규모 개구부를 고려한 격납건물의 3차원 유한요소 모델을 도출하였다. 재료 특성 및 구조적 성능에 내포된 불확실성을 고려하기 위하여 각 변수들의 변동성에 대한 극한내압 성능의 민감도 해석을 수행하였다. 민감도 해석 결과를 통해 확률론적 내압 취약도 평가를 위한 불확실성 변수 및 분포 특성을 도출하였다. 현재의 텐던 긴장력 상태를 고려하기 위하여 가동 중 검사 보고서에 기록된 텐던 긴장력 값을 중앙값으로 적용하였다. 누설(leak)과 파단(rupture)을 파괴모드로 정의하고, 각각에 대한 극한내압 취약도 평가를 위하여 한계상태를 정의하였다. 각 파괴모드에 대한 대상 격납건물의 내압취약도를 내압 성능 중앙값, 고신뢰도 저파괴확률 성능값, 신뢰도 수준에 따른 취약도 곡선을 통하여 제시하였다. 누설 및 파단 파괴모드에 대한 고신뢰도 저파괴확률값은 각각 0.7991 MPa, 0.8691 MPa로 평가되었다.
The seismic evaluation of electric power facilities in the switchyard of nuclear power plants is currently insufficient. In order to evaluate the seismic performance of lightning arrester subjected to four types of earthquake (near- and far-fault earthquakes, NEHRP Site Class A&B and D earthquakes), seismic fragility analysis using maximum likelihood estimation is performed considering various damage states. The comparison of the seismic fragility curves for three main parts of lightning arrester that are the busing, anchor and steel frame, reveals that the failure of lightning arrester is governed by the bushing damage mode such as porcelain cracking.
지진취약도 곡선은 구조물의 피해를 지반가속도에 따른 확률로 나타낸 것으로, 이를 이용하여 구조물의 지진에 대한 손 상확률을 추정할 수 있다. 본 연구에서는 6층, 12층 중복도형 격간벽 구조 시스템에 대한 취약도 곡선을 산출하기 위해 22 쌍의 지반가속도를 이용하여 증분동적해석(Incremental dynamic analysis)을 수행하고, 다양한 지진강도에 대한 파괴확률 을 구하였다. 정형의 격간벽 구조의 해석결과와 1층의 격간벽을 기둥으로 대체한 구조물, 중앙 복도에 기둥이 추가된 구조 물의 해석결과를 비교하였다. 취약도 해석결과에 따르면 동일한 수준의 지진하중에 대하여 중앙 복도에 기둥을 추가한 모 델이 가장 높은 내진 안전성을 갖는 것으로 나타났다.
지진취약도 분석은 원자력 발전소의 내진성능평가를 위하여 발전되어져 왔지만, 현재는 적용성이 건물과 교량 등에도 확대되어지고 있다. 일반적으로 지진취약도 곡선은 수많은 지진가속도 기록을 이용하여 비선형 시간이력해석으로 구한다. 비선형 시간이력해석에 의한 지진취약도 분석은 구조물의 모델링과 해석에 많은 시간이 소요되는 과정을 요구한다. 비선형 시간이력해석의 이와 같은 약점을 보완하기 위해서 변위계수법과 역량스펙트럼 방법과 같은 간단한 해석방법을 지진취약도 분석에 적용하였다. 변위계수법과 역량 스펙트럼 방법을 적용한 지진취약도 곡선의 정확성을 평가하기 위하여, 철근콘크리트 전단벽 구조물에 대한 변위계수법과 역량스펙트럼 방법을 적용한 지진취약도 곡선을 비선형 시간이력해석에 의해 구해진 지진취약도 곡선과 비교하였다. 지진취약도 곡선의 작성을 위해서는 설계스펙트럼에 대응되는 190개의 인공지진과 Shinozuka 등이 제안한 방법이 적용되었다.
본 연구에서는 국내에서 널리 사용되고 있는 매설가스배관인 API X65에 대해 지진 취약도 해석을 수행하였다. 이를 위해, 15가지 경우의 배관 해석모델에 대해 12본 세트의 다양한 지진파를 0.1g 등간격으로 스케일링하여 비선형 시간이력해석을 수행한 후, 비선형 시간이력해석으로 얻어진 매설가스배관의 최대 변형률을 이용하여 지진취약도 해석을 수행하였다. 지진 취약도 해석을 위해 본 연구에서는 또한, 지반조건, 단부지점조건, 매립깊이 및 배관형태 등을 변수로 고려하여 지진 취약도 해석을 수행하였다. 지진 취약도 해석결과, 지반조건, 단부지점조건 및 매립깊이는 매설가스배관의 취약도 곡선에 영향을 끼치는 것으로 판단되었고, 특히 지반조건이 미치는 영향은 다른 두 변수에 비해 다소 큰 것을 확인할 수 있었다. 반면에, 배관형태가 취약도 곡선에 미치는 영향은 미미한 것을 알 수 있었다. 종합적으로, 매설가스배관의 지진 취약도 해석과 관련된 연구가 많지 않은 현실을 감안할 때, 본 연구결과는 매설가스배관의 지진 취약성 평가해석에 초석으로 고려되어질 수 있고, 추후 관련분야 연구에 좋은 참고자료가 될 것으로 사료된다.
지진하중에 의한 구조물의 손상 및 피해는 지진에 의한 동적 하중을 고려한 구조물의 내진설계의 도입을 통하여 저감시킬 수 있으며, 이 때 내진설계 도입으로 인한 구조물의 내진성능 향상 및 그에 필요한 비용을 동시에 고려하여 내진설계 도입의 적합성을 검증해야한다. 본 연구에서는 내진성능의 확률적 평가를 위해서 지진하중과 구조물 자체에 내재되어 있는 불확실성을 고려하여 빌딩구조물의 지진취약도를 작성하였으며 시뮬레이션의 효율성을 높이기 위한 Latin Hypercube 샘플링 기법을 도입하여 해석을 수행하였다. 내진 설계 도입의 필요성 검증을 위해서는 구조물의 물리적 내진성능 이외에도 구조물의 사회적, 경제적 기능 및 가치에 대한 고려가 필요하며 이러한 요소를 고려한 의사결정해석 절차를 등가비용모델의 예를 들어 제시하였다.