Organic-inorganic hybrid coating films have been used to increase the transmittance and enhance the physical properties of plastic substrates. Sol-gel organic-inorganic thin films were fabricated on polymethylmethacrylate (PMMA) substrates using a dip coater. Metal alkoxide precursor tetraethylsilicate (TEOS) and alkoxy silanes including decyltrimethoxysilane (DTMS), 3-glycidoxypropyltrimethoxysilane (GPTMS), phenyltrimethoxysilane (PTMS), 3-(trimethoxysilyl)propyl methacrylate (TMSPM) and vinyltrimethoxysilane (VTMS) were used to synthesize sol-gel hybrid coating solutions. Sol-gel synthesis was confirmed by the results of FT-IR. Cross-linking of the Si-O-Si network during synthesis of the sol-gel reaction was confirmed. The effects of each alkoxy silane on the coating film properties were investigated. All of the organicinorganic hybrid coatings showed improved transmittance of over 90 %. The surface hardness of all coating films on the PMMA substrate was measured to be 4H or higher and the average thickness of the coating films was measured to be about 500 nm. Notably, the TEOS/DTMS coating film showed excellent hydrophobic properties, of about 97°.
The tribology characteristics of the graphene coated PA6 were evaluated with scratch experiments. As a result, the following conclusions were obtained. The PA6 of the graphene coating shows a 0.1 improvement in friction coefficient and a lower abrasion depth than PA6 in the variable pressure-type scratch experiments. PA6 of the graphene coating showed a lower friction coefficient of 0.2 or more than PA6 in the friction coefficient in the static pressure scratch experiments, indicating that wear resistance was improved. In both the variable and the static pressure type scratch experiments, the tip depth of graphene-coated PA6 shows a thinner wear depth than PA6, showing the effect of graphene. The graphene content showed excellent tribology characteristics at 3%, and there was no difference in tribology characteristics at higher contents.
This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.
The tribological properties of TiC, TiN and TiC/TiN coatings on steels prepared by the cathodic-arc (CA) ion plating technique were investigated. Experiments were carried out on a tribo-test machine using a Falex journal V block system. The friction and wear characteristics of the coatings were determined by varying the applied load and sliding speed. The TiC, TiN and TiC/TiN coatings markedly increased the tribological characteristics of the surface. As far as a single layer coating was concerned, TiN goes better results than TiC. However, the TiC/TiN multilayer coating performed better than either single layer coating. The major factor in the improved performance of the multilayer coating was the role of TiC in improving the adhesion between the external TiN layer and the substrate steel.
This research measured the change in mechanical characteristics of a sample obtained by finishing a metal coating to an engineering plastic manufactured using a 3D printer to satisfy both lightweight and quality characteristics. High-Temp material, which can be applied to space thermal environments with large temperature fluctuations, was applied as the engineering plastic material, and Stereolithography(SLA) method, which has relatively higher precision than Fused Film Fabrication(FFF) method, was selected as the manufacturing method. Electroless & electroplating were performed by metal coating on the surface to satisfy the characteristics of products requiring electrical conductivity. Tensile and bending tests were conducted to verify a change in the mechanical characteristics of a sample completed with a metal coating, and an adhesion test of the metal coating was also added.
A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300oC for 1 h and 400oC for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300oC for 1 h), and 167.0 Hv (400oC for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.
현대에 있어 지구온난화 현상으로 인해 여름철에는 폭염, 겨울에는 한파가 빈번해지는 이상기후가 지속적으로 발생 하고 있다. 여름철과 겨울철의 기온 양극화가 심해지고 있으며 이로 인한 급격한 변화로 다양한 분야에서 문제가 발생하고 있 다. 이에 전 세계에서는 사고예방 및 근본적인 문제를 해결하기 위하여 새로운 기술을 도입하고, 이에 맞는 정책을 추진하고 있 다. 따라서 본 연구에서는 이러한 사회적인 문제를 극복할 수 있는 방안으로 구조물 및 건축물등 다양한 분야에서 가장 많이 사용되는 골재인 잔골재에 대하여 다공성 골재로 치환함과 동시에 열에너지 저장이 가능한 상변화 물질을 함침하고, 골재 내 PCM의 성능 극대화를 위한 SOL-GEL 코팅에 대해 연구하였으며 이를 활용하여 모르타르를 제작하였다. 성능을 확인하기 위하 여 SEM, DSC, FT-IR 및 강도실험을 진행하였으며 최종적으로 제조된 SOL-GEL코팅된 PCM 함침 활성탄의 경우 냉각시 상변화 온도 2.4℃와 26.8J/g의 열에너지를 확인하였으며 가열시 상변화 온도 7.1℃와 32.95J/g의 열에너지를 확인하였다. 본 연구에서 제작된 잔골재를 활용한 모르타르의 경우 7일차 압축강도 37.68MPa, 28일차 압축강도 50.34MPa, 28일차 휨강도 4.5MPa를 확인 하였다.
Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000oC and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500oC to 700oC for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200oC, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500oC for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350oC for 5–15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.
The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 μm, 85°: 196.4 ± 9.6 μm, and 80°: 208.8 ± 10.2 μm, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 μm, 85°: 8.5 ± 1.1 μm, and 80°: 8.5 ± 0.4 μm. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.
Graphene, a new material with various advantageous properties, has been actively used in various fields in recent years. Applications of graphene oxide are increasing in combination with other materials due to the different properties of graphene oxide, depending on the number of single and multiple layers of graphene. In this study, single-layer graphene oxide and multi-layer graphene oxide are spray coated on polystyrene, and the physicochemical properties of the coated surfaces are characterized using SEM, Raman spectroscopy, AFM, UV-Vis spectrophotometry, and contact angle measurements. In singlelayer graphene oxide, particles of 20 μm are observed, whereas a 2D peak is less often observed, and the difference in surface height increases according to the amount of graphene oxide. Adhesion increases with an increase in graphene oxide up to 0.375 mg, but decreases at 0.75 mg. In multi-layer graphene oxide, particles of 5 μm are observed, as well as a 2D peak. According to the amount of graphene oxide, the height difference of the surface increases and the adhesive strength decreases. Both materials are hydrophilic, but single-layer graphene oxide has a hydrophilicity higher than that of multi-layer graphene oxide. We believe that multi-layer graphene oxide and single-layer graphene oxide can be implemented based on the characteristics that make them suitable for application.
This study is aimed at preparing and evaluating the plasma resistance of YAS (Y2O3-Al2O3-SiO2) coating layer with crystalline YAG phase contents. For this purpose, YAS frits with controlled phase contents are prepared and melt-coated on sintered Al2O3 ceramics. Then, the results of phase analysis of crystalline YAS coating layer are compared to that of YAS frits, and discussed with regard to the plasma resistance of the YAS coating layer. The phase contents of the YAS frit change in a manner different from that of the prepared YAS coating layer, presumably owing to the composition change of YAS frit during the melt-coating process. The plasma resistance of the YAS coating layer is shown to increase with the YAG phase contents in the coating layer. Comparing the weight loss of YAS coating layer with those of commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the prepared YAS coating layer is 8 times higher than that of quartz and 3 times higher than that of Al2O3; this layer shows 70 % of the resistance of Y2O3.
A T-800 (Co-Mo-Cr) coating material is fabricated using Co-Mo-Cr powder feedstock and laser cladding. The microstructure and melted Al erosion properties of the laser-cladded T-800 coating material are investigated. The Al erosion properties of the HVOF-sprayed MoB-CoCr and bulk T-800 material are also examined and compared with the laser-cladded T-800 coating material. Co and lave phases (Co2MoCr and Co3Mo2Si) are detected in both the lasercladded T-800 coating and the bulk T-800 materials. However, the sizes of the lave phases are measured as 7.9 μm and 60.6 μm for the laser-cladded and bulk T-800 materials, respectively. After the Al erosion tests, the erosion layer thicknesses of the three materials are measured as 91.50 μm (HVOF MoB-CoCr coating), 204.83 μm (laser cladded T- 800), and 226.33 μm (bulk T-800). In the HVOF MoB-CoCr coating material, coarse cracks and delamination of the coating layer are observed. On the other hand, no cracks or local delamination of the coating layer are detected in the laser T-800 material even after the Al erosion test. Based on the above results, the authors discuss the appropriate material and process that could replace conventional bulk T-800 materials used as molten Al pots.
In this study, isophorone diisocyanate (IPDI) and dimethylolbutanoic acid (DMBA) were used on the basis of poly caprolactone diol (3M, 3.5M, 4M, 4.5M) for the synthesis of water-based polyurethanes for coating on skin layers of leather. Tensile strength, elongation, and adhesive strength of the prepared samples were measured. As a result of measuring the tensile strength, the tensile strength was found to be 4.09 kgf / mm2 when 3 moles were applied, and 1.071 kgf / mm2 when 4.5 moles were applied. Elongation was 366 % when 3 moles of PCL were applied, and 709 % at 4.5 moles. Adhesive strength was 2.887 kgf / cm when 3 moles of PCL was applied and 0.998 kgf / cm when 4.5 moles were applied.
스테인레스 스틸에 대한 합성된 폴리우레탄-에폭시 수지의 기계적 특성은 SEM, FT-IR, 인장특성, 그리고 EIS에 의한 특정질량손실량, 입도분석 등에 의해 물성을 측정하였다. 친환경적인 중방식 도료에 관한 관심이 고조됨에 따라 스테인레스 등의 금속에 코팅하는 무용제 도료를 합성하였다. 폴리올, IPDI, 충진제, 실리콘 계면활성제, 촉매 등이 함유된 기존 중방식수지보다 폴리올, MDI, 충진제, 실리콘 계면활성제, 촉매가 함유되어 합성된 중방식수지의 도료가 온도변화에 따른 인장강도가 증가하였고, 전해성이 높은 용액 속에서 저헝력이 크게 측정되었으며, 내구력과 강도가 양호하였다. 견고한 중방 식수지의 기계적 특성은 가교와 부식환경의 차단력이 증가함에 따라 강도가 증가하였다. 결론적으로 중방식의 가교된 미세조직은 방청코팅이 어려운 스테인레스 스틸 같은 금속물질 코팅에도 좋은 실험결과를 보여주었다.
본 연구에서는 에틸아세테이트와 피페라진을 적용한 가죽 표면 코팅제로 사용할 수용성 폴리우레탄의 합성을 위해 poly(tetramethylene ether) glycol(PTMG)를 기반으로 isoporon diisocyanate (IPDI)와 dimethylolbutanoic acid(DMBA)의 반응을 통해 프리폴리머를 합성하였다. 이후 수분산시킨 수지에 피페라진을 0.01M, 0.03M, 0.05M, 0.07M을 쇄연장 반응을 해서 각각의 인장강도, 연신율, CV(cyclic voltammetry), 내용제성 분석을 실시했다. 준비된 시료의 인장강도는 피페라진 함량 0.07M일 때 5.422 kgf/㎟ 로 측정되었으며, 연신율을 측정한 결과 피페라진이 0.01M 일 때 587 %로 측정되었다. 내용제성 분석결과 피페라진 함량과 상관없이 동등한 내용제성으로 측정되었으며, CV 측정을 통해 피페라진 함량에 따라 산화환원전위가 변화되는 것을 확인 할 수 있었다.