In order to solve the rapidly increasing domestic delivery volume and various problems in the recent metropolitan area, domestic researchers are conducting research on the development of “Urban Logistics System Using Underground Space” using existing urban railway facilities in the city. Safety analysis and scenario analysis should be performed for the safe system design of the new concept logistics system, but the scenario analysis techniques performed in previous studies so far do not have standards and are defined differently depending on the domain, subject, or purpose. In addition, it is necessary to improve the difficulty of clearly defining the control structure and the omission of UCA in the existing STPA safety analysis. In this study, an improved scenario table is proposed for the AGV horizontal transport device, which is a key equipment of an urban logistics system using underground space, and a process model is proposed by linking systematic STPA safety analysis and scenario analysis, and UCA and Control Structure Guidelines are provided to create a safety analysis.
한국통합물류협회의 발표에 따르면, 2021년도 국내 총 택배 물량은 33억 7천만 개로 전년대비 7.59% 증가했고 매출액은 8조 5,800억 원으로 전년대비 14.6% 증가한 것으로 나타났으며 이러한 증가추세는 향후 지속될 것으로 전망된다. 이러한 택배 물량을 처리함에 있어 작업자는 대표적인 근골격계 부담작업에 노출되어 각종 근골격계 질환 유발 및 능률 저하가 갈수록 심화되고 있는 상황이다. 이에 따라 최신 통신네트워크 기술을 기반으로 하여 작업자와 자율주행 무인 운반차(Automated Guided Vehicle, AGV) 그리고 로봇의 협업을 지원하기 위한 기술개발에 대한 관심이 고조되고 있다. 본 연구에서는 LTE / 5G와 같은 최신 통신네트워크 환경 하에서 물류센터에서 자율주행하면서 택배의 상/하차 작업을 수행하는 Horizontal Scissor Lift를 갖는 AGV를 개발하고 택배 분류작업을 수행하는 로봇이 AGV와 협업을 가능하도록 하여 물류 집하 및 분배 작업이 통합된 물류 자동화 플랫폼을 구축한다. 본 물류 자동화 플랫폼은 자율 주행하면서 택배를 상/하차 하는 Scissor Lift-type AGV, 택배 분류를 위한 로봇, 다수의 AGV의 충돌을 방지하고 작업지시 및 작업상태 확인, 작업결과 피드백 등의 실시간 모니터링을 위한 관제 시스템 등으로 구성된다. 특히, 본 논문에서는 Horizontal Scissor Lift를 갖는 AGV의 구체적인 설계 및 해석결과를 제시하고, AGV 시제품에 대해 이동속도, 긴급 제동거리 및 위치정밀도에 대한 성능 평가를 수행함으로써 개발되는 AGV 시스템의 성능을 검증한다.
Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.
Customers are generally requiring a variety of products, earlier due date, and lower price. A manufacturing process needs the efficient scheduling to meet those customer's requirements. This study proposes the novel algorithm named MJA(Minimum Job completion time and AGV time) that increases the performance of machines and AGV(Automated Guided Vehicles) in many kinds of job types. MJA optimizes the bottleneck of machines and efficiency of AGV with considering two types of dispatching at the same time. Suggested algorithm was compared with existing heuristic methods by several simulations, it performed better for reducing the time of tardiness.
본 논문은 존 조정하에서의 자동반송차량 네트워크에서 발생하는 고착을 해결하기 위한 두가지 효과적인 알고리듬을 소개한다. 이 알고리듬들은 특별히 양방향 네트워크에 알맞도록 고안되었다. 사이클 제거 알고리듬은 고착을 예방하기 위한 차량의 안전한 라우트를 결정하나, 그래프 축소 알고리듬은 고착을 회피하기 위하여 미래 잠재적인 고착 발생 조건을 결정한다. 시뮬레이션을 통하여 알고리듬들의 성능을 비교 분석한 결과 작업물의 이동 횟수와 알고리듬의 시간 복잡성
Modem automated manufacturing processes employ automated guided vehicles(AGVs) for material handing, which serve several machining centers(MCs) in a factory. Optimal scheduling of AGVs can significantly help to increase the efficiency of the manufacturing
Modern automated manufacturing processes employ automated guided vehicles(AGVs) for material handling, which serve several machining centers(MCs) in a factory. Optimal scheduling of AGVs can significantly help to increase the efficiency of the manufacturing process by minimizing the idle time of MCs waiting for the raw materials. In this paper, we will analyse the requirements for an optimal schedule and then provide a mathematical framework for an efficient schedule of material delivery by an AGV. With this model, the optimal number of MCs to be utilized will also be determined. Finally, the material delivery schedule employing multiple journeys to the MCs by the AGV will be carried out. Through rigorous analysis and simulation experiments, we shall show that such a delivery strategy will optimize the overall performance.
In this work, a simulation study is accomplished to evaluate the effectiveness of EDG-based deadlock avoidance strategy. The considered strategy has been proposed in order to effectively handle conflicts and deadlocks occurring in zone-control AGV (Automated Guided Vehicle) systems. It is based on the prediction of deadlock possibility and prohibition of vehicle movement to the next zone until the deadlock possibility is removed. Throughout simulation study applied to complex network-type AGV path, the considered deadlock-avoidance strategy has provided satisfactory results even under the large number of vehicles.
Gradually recent automatic systems require how to manipulate all shared internal resources of system including components manufacturing equipments. Especially practical operation schedulings of manufacturing are gradually inevitable procedures in dynamic industrial environments. We suggest and evaluate a dynamic scheduling rule of machine and material handling system for on-line operation in job shop type FMS. Because alternating status should be included in operation scheduling procedures effectively and without delay in dynamic industrial environments, the mutual interaction between the machine operation scheduling and AGV dispatching rule was also studied to be based on simulation. This study compared the performance of the evaluation which was obtained from Dynamic Scheduling of FMS, and developed the Priority Rule Matrix for switching mechanism in dynamic environment by using those results.