검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 180

        2.
        2024.04 구독 인증기관·개인회원 무료
        Chitin and chitosan, abundant biopolymers from shellfish, crustaceans, and fungal hyphae, have diverse applications in food, biomedical, and industrial sectors. Also, insects offer a one of the chitin and chitosan source, yet research into the biological processes of chitin and chitosan within insects remains inadequate. To investigates the safety and benefits of insect-derived chitin and chitosan, we orally administered crab-derived and insect-derived chitin and chitosan to mice and compared RNA expression. NGS derived sequences were obtained and DEG and GO analyses were performed. This study displays a chance to progress the application of edible insects.
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the expression of genes related to fruit ripening was investigated using realtime PCR. The study aimed to determine the effective conditions of calcium compounds (Calcium citrate, calcium chloride, calcium nitrate, GH-Ca, OS-Ca) and chitosan treatment to extend the shelf-life in the ‘Kumhong’ nectarine and ‘Madoka’ peach fruits. In this study, in the ‘Kumhong’ and ‘Madoka’ fruits, the expression of genes related to cell wall degradation, pectin lyase (PL), polygalacturonase (PG), and pectin methylesterase (PME), was inhibited by calcium, chitosan, or a mixture (Chitosan+CaCl2) treatment. In ‘Madoka’ peach, although the expression of the PG gene was suppressed at pre-harvest Ca and chitosan treatment, the expression of the PL gene was induced at pre- and post-harvest Ca and chitosan treatment compared to the control. The spray of calcium, chitosan itself, or a mixture (Chitosan+ CaCl2) on the trees at the ripening stage and harvested fruits can extend the shelf-life by suppressing the expression of cell wall degrading enzymes genes (PL, PG, PME) in ‘Kumhong’ nectarine and ‘Madoka’ peach tree. These results provide valuable information for the development of technology for the extension of the shelf-life of peach and nectarine fruits.
        4,000원
        4.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The challenge of incorporating photothermal conversion function into chitosan (CS) hybrid fibers lies in balancing functionality and mechanical properties. In this study, we successfully prepared a chitosan/graphene oxide/gelatin (CS/GA/GO) hybrid fiber using the wet spinning process, achieving improved mechanical properties and efficient photothermal conversion capabilities. When compared with pure CS fiber with a breaking strength of 1.07 cN/dtex, the breaking strength of the CS/ GA composite fiber increased by 46.73%, while the CS/GA/GO hybrid fiber showed an even greater increase of 85.98%. In addition, the introduction of gelatin (GA) led to secondary scattering of near-infrared light, enhancing the photothermal conversion efficiency. As a result, the CS/GA/GO hybrid fiber exhibited a faster temperature rise rate and higher maximum temperatures (94.3 °C, 103.0 °C, and 111.3 °C) as compared to the CS/GO hybrid fiber. The successful incorporation of GA not only improved the mechanical properties but also enhanced the photothermal performance of the hybrid fiber.
        4,200원
        5.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study reports the synthesis of a novel graphene/chitosan/β-cyclodextrin composite material (GO/CS/β-CD) via a onestep chemical reduction method, which combines the advantages of graphene, chitosan, and β-cyclodextrin. The morphology and structure of the composite were characterized using various techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. Subsequently, sortase A (SA) was immobilized onto the GO/CS/β-CD for the detection of Staphylococcus aureus. The sensor exhibited a good linear relationship within the concentration range of 30–300 CFU/mL, with a detection limit of 12 CFU/mL. The GO/CS/β-CD composite material showed enhanced properties due to the synergistic effect of graphene, chitosan, and β-cyclodextrin. The immobilization of sortase A onto the composite material improved the sensitivity and selectivity of the sensor for the detection of S. aureus. This study presents a novel graphene/chitosan/β-cyclodextrin composite material with immobilized sortase A, demonstrating enhanced sensitivity and selectivity for the detection of Staphylococcus aureus, which has potential for the development of high-performance sensors in various fields.
        4,000원
        6.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        N-doping content and configurations have a significant effect on the electrochemical performance of carbon anodes. Herein, we proposed a simple method to synthesize highly N self-doped chitosan-derived carbon with controllable N-doping types by introducing 2ZnCO3 ·3Zn(OH)2 into the precursor. The as-synthesized NC-CS/2ZnCO3·3Zn(OH)2 electrode exhibited more than twice the reversible capacity (518 mAh g− 1 after 100 cycles at 200 mA g− 1) compared to the NC-CS electrode, superior rate performance and outstanding cycling stability. The remarkable improvement should be mainly attributed to the increase of N-doping content (particularly the pyrrolic-N content), which provided more active sites and favored Li+ diffusion kinetics. This study develops a cost-effective and facile synthesis route to fabricate high-performance N self-doped carbon with tunable doping sites for rechargeable battery applications.
        4,000원
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes (e-CS/MWCNTs/GCE) was used as a working electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and melatonin (MT), which were related to circadian rhythms. The electrochemical characterizations of the working electrode were carried out via electrochemical impedance spectroscopy and chronocoulometry. It was found that electrochemical modification method, that was cyclic voltammetry, may can cause continuous CS polymerization on MWCNTs surface to form a dense membrane with more active sites on the electrode, and the electrochemically active surface area of e-CS/MWCNTs/GCE obtained was about 7 times that of GCE. The electrochemical behaviour of DA, 5-HT and MT on working electrode were carried out via differential pulse voltammetry and cyclic voltammetry. The results showed that e-CS/MWCNTs/GCE solved the problem that the bare electrode could not detect three substances simultaneously, and can catalyze oxidation potential difference as low as 0.17 V of two substances reaction at the same time, indicating very good electrocatalytic activity. By optimizing the detection conditions, the sensor showed a good linear response to DA, 5-HT and MT in the range of 20-1000 μmol/L, 9-1000 μmol/L and 20-1000 μmol/L, and the detection limits were 12 μmol/L, 10 μmol/L and 22 μmol/L (S/N = 3), respectively. In addition, the proposed sensor was successfully applied to the simultaneous detection of DA, 5-HT and MT in human saliva samples.
        4,200원
        8.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to develop catechin patches for skin regeneration at wound sites, patches with varying concentrations of catechin and chitosan were manufactured. An optimal composition ratio was determined by adjusting the drug release rate and amount, to maximize efficiency. The catechin used in this study was extracted from green tea leaves using a solvent/ultrasonication method, and its characteristics were confirmed through Fourier transform-infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) analyses. Patches were prepared with different concentrations of catechin and chitosan, and various properties were analyzed using techniques such as FT-IR, water contact angle analysis, and UV-Vis spectroscopy. It was observed that as the chitosan concentration increased, the release of catechin slowed down or almost ceased. A patch manufactured with 1.5 mg/cm2 of catechin at a 1 % chitosan concentration exhibited a high initial release rate over 24 h and demonstrated cellular biocompatibility. Consequently, these patches, with tailored release characteristics based on the concentrations of chitosan and catechin, hold promise for use as drug delivery systems in wound healing applications.
        4,000원
        10.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper evaluates the adsorptive removal of sunset yellow (SY) from aqueous solutions using a new magnetic glycodendrimer (MGD). To synthesize the MGD, chitosan dendrons were cultivated on amine-functionalized magnetic graphene oxide. A number of analytical methods were employed to physicochemically characterize the synthesized MGD. Batch adsorption conditions were optimized using the Box–Behnken design. An optimized initial SY content of 633 mg/L, an optimized contact time of 33.37 min, and an optimized pH of 3.72 maximized the MGD adsorption capacity to 485 mg/g. The Langmuir isotherm was employed to describe adsorption equilibrium, while adsorption kinetics was studied via the Lagergren kinetics model. The SY adsorption onto the MGD was thermodynamically found to be spontaneous (ΔG° < 0) and exothermic (ΔH° = – 19.120 kJ/mol), leading to a decreased disorder (ΔS° = – 54.420 kJ/mol) in the solid–liquid interface. The MGD showed reusability and unique magnetic characteristics. It was concluded that the MGD could be a potential alternative for the adsorptive and magnetic removal of SY from an aqueous solution.
        5,500원
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we successfully grafted chitosan (CS) onto multi-walled carbon nanotubes (MWCNTs) to enhance their properties and potential applications in the biomedical field. FTIR spectroscopy confirmed the successful covalent bonding of CS onto MWCNTs, indicated by the new absorption peak of the amide bond (–CONH–). Thermal analysis showed that the modified MWCNTs (MWCNT-CS) had significant weight loss around 260 °C, suggesting the decomposition of hydroxypropyl chitosan, and confirming its presence in the nanocomposite. SEM images revealed that CS grafting improved the dispersibility of MWCNTs, a property crucial for their use as nanofillers in polymers. Moreover, the micro-tensile bond strength of dentin surface increased with increasing MWCNT-CS concentrations, indicating the potential of MWCNT-CS as a pretreatment for dentin bonding. After simulated aging, the bond strength remained significantly higher for MWCNT-CS groups compared to those without pretreatment. In biocompatibility assessment using the MTT assay, MWCNT-CS showed higher cell viability than MWCNT, suggesting improved biocompatibility after CS modification. The results of this study suggest that CS-modified MWCNTs could be promising materials for applications in dentin bonding, dentin mineralization, bone scaffolding, implants, and drug delivery systems.
        4,000원
        12.
        2023.10 구독 인증기관·개인회원 무료
        기존에는 생산되는 키틴과 키토산의 대부분이 게, 새우등 갑각류 껍질에서 유래하였다. 하지만 어업에 의존하 는 기존 갑각류 비해 친환경적이며 품질 유지에 이점을 가지는 곤충으로부터 유래한 키틴이 최근 주목 받기 시작 하며 연구가 활발해지고 있다. 이에 키토산이 남조류의 응집을 통해 녹조 제거 효과를 가지며 기존에 녹조를 억제하기 위해 널리 사용되던 살조제들이 독성을 띠어 환경에 악영향을 미치는 문제를 해결할 수 있다는 연구를 참고하여 매미 탈피각으로부터 추출한 키토산을 녹조 방제에 활용해 보고자 하였다. 매미 탈피각으로부터 키토 산을 추출하고 대표적인 녹조 원인종인 Microcystis aeruginosa 배양 후 추출한 키토산을 처리하여 녹조의 응집 효과를 관찰하였다. 본 연구에서 새로운 키토산 추출 원으로서 매미 탈피각의 가능성을 제시하였으며 이를 녹조 방제에 활용함으로써 버려지는 자원인 매미 탈피각의 활용 방안을 제시하였다.
        13.
        2023.10 구독 인증기관·개인회원 무료
        The western flower thrips, Frankliniella occidentalis, is a significant economic pest among thysanopterans because of its massive feeding damage and ability to spread tospovirus to hundreds of plant species worldwide. To control this pest, chemical insecticides have been used but become unsatisfactory in the control efficacy due to the rapid resistance development of F. occidentalis. The cost-effective chitosan-based nanoparticle (NP) formulations as dsRNA insecticide gave > 80% mortalities in 7 days in the field condition. Nevertheless, the usage of NP-based dsRNA is hindered by the conflict between the excessive expense of producing dsRNA and the massive quantity of materials required for field application. Many research reports have demonstrated microbial-based dsRNA production using the L4440 vector and HT115 (DE3) Escherichia coli for application to vertebrate and invertebrate systems. In this study, we aimed to compare chitosan NP and bacterial formulation-based dsRNA control tactics against F. occidentalis using RNAi against the vacuolartype ATPase (vATPase) gene.
        1 2 3 4 5