Much effort has been carried out to calibrate and revise asteroseismic relations, given their importance of relations in asteroseismology in determining fundamental parameters of stars. In this study, we statistically explore asteroseismic relations with partial correlation coefficients to determine the most fundamental parameters, separately analyzing asteroseismic data based on the evolutionary status of stars from main sequence up to core helium-burning red-clump stars. We have found that regardless of the evolutionary status of the sampled stars the surface gravity and density of stars strongly influence the observed correlations. More importantly, it is found that indirect correlations derived considering the influence of confounding parameters are subject to the evolutionary status. For example, the observed correlation of the large frequency separation Δν with the central frequency νmax is influenced by the stellar mass, radius, and luminosity only for main sequence stars. The observed correlation of the width of the Gaussian envelope δνenv with νmax is influenced by the stellar mass, effective temperature, radius, and luminosity for main-sequence and subgiant stars. The observed relation between Δν and the small frequency separation δν02 is influenced by the stellar mass, radius, and luminosity for main-sequence and subgiant stars. In contrast, effective temperature, metallicity, and age do not seem to significantly affect the observed correlations. Finally, we conclude by discussing implication of our findings.
In this study, the characteristics of wind pressure distribution on circular retractable dome roofs with a low rise-to-span ratio were analyzed under various approaching flow conditions by obtaining and analyzing wind pressures under three different turbulent boundary layers. Compared to the results of previous studies with a rise-to-span ratio of 0.1, it was confirmed that a lower rise-to-span ratio increases the reattachment length of the separated approaching flow, thereby increasing the influence of negative pressure. Additionally, it was found that wind pressures varied significantly according to the characteristics of the turbulence intensity. Based on these experimental results, a model for peak net pressure coefficients for cladding design was proposed, considering variations in turbulence intensity and height.
Nuclear facilities present the important task related to the migration and retention of radioactive contaminants such as cesium (Cs), strontium (Sr), and cobalt (Co) for unexpected events in various environmental conditions. The distribution coefficient (Kd) is important factor for understanding these contaminants mobility, influenced by environmental variables. This study focusses the prediction of Kd values for radionuclides within solid phase groups through the application of machine-learning models trained on experimental data and open source data from Japan atomic energy agency. Three machine-learning models, such as the convolutional neural network, artificial neural network, and random forest, were trained for prediction model of the distribution coefficient (Kd). Fourteen input variables drawn from the database and experimental data, including parameters such as initial concentration, solid-phase characteristics, and solution conditions, served as the basis for model training. To enhance model performance, these variables underwent preprocessing steps involving normalization and log transformation. The performances of the models were evaluated using the coefficient of determination. These results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. These models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and longterm risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.
In order to apply indirect methods (such as scaling factors) to assess the radionuclide inventory of waste generated by nuclear power plants, it is essential to first evaluate the correlation coefficient between key radionuclides and those that are difficult to measure (DTM). The benchmark for the correlation coefficient (r) applied in indirect assessments is set at 0.6, and its significance can vary based on both its value and the size of the dataset. For instance, deriving a correlation coefficient using three data points versus utilizing a dataset with a hundred data points would yield different implications. This study addresses the variance in correlation coefficients based on data selection and presents a methodology for validating the significance of these coefficients. Additionally, we will discuss how these variances may impact the results of indirect assessments, such as scaling factor evaluations.
A disposal system for spent nuclear fuel mainly divides into two parts; Engineered barriers include spent nuclear fuel, canister, buffer and backfill and natural barriers mean a host rock surrounding engineered barriers. If radionuclides released from a repository, they can migrate to the ecosystem. Sorption plays an important role in retarding the migration of released radionuclides. Hence, the safety assessment for the disposal of a spent nuclear fuel should consider the migration and retardation of radionuclides in geosphere. Distribution coefficient is one of input parameters for the safety assessment. In this work, distribution coefficients for crystalline rock as a natural barrier were collected and evaluated for the purpose of safety assessment for the deep geological disposal of a spent nuclear fuel. The radionuclides considered in this work are as follows; alkali and alkaline earth metals (Cs, Sr, Ba), lanthanides (Sm), actinides (Ac, Am, Cm, Np, Pa, Pu, Th U), transition elements (Nb, Ni, Pd, Tc, Zr), and others (C, Cl, I, Rn, Se, Sn). The sorption of radionuclides is influenced by various geochemical conditions such as pH/carbonates, redox potential, ionic strength, radionuclide concentration, kinds and amounts of minerals, and microbes. For the evaluation of distribution coefficients, the data from Sweden (SKB), Finland (Posiva), Switzerland (Nagra), and Japan (JAEA) were collected, analyzed, and the recommended distribution coefficients have been suggested.
KDS 41 12 00의 풍하중 관련 식은 정형적인 건축물에 대한 수많은 연구를 통해 만든 경험식이다. 따라서 비정형 건축물에 대하여 KDS 41 12 00에 따라 풍하중을 산출하면 건축물의 형상이 반영되지 않아 실제 풍하중과 상이할 수 있다. 이에 Y자형 건축물 에 대하여 풍동실험에 따른 풍하중과 KDS 41 12 00에 따른 풍하중을 산출하고 비교하고자 하였다. 이를 위해 풍력실험을 수행하였고 최종적으로 두 가지 방법에 따른 풍하중의 비율을 산출하고 이를 풍하중 증감계수로 도출하고자 하였다. 본 연구에서 제시하는 풍하 중 증감계수를 KDS 41 12 00에 따라 풍하중 산출 과정에 적용한다면 보다 합리적으로 Y자형 건축물에 대한 풍하중을 산출할 수 있 을 것으로 사료된다.
Since 2018, Central Research Institute of Korea Hydro & Nuclear Power (KHNP–CRI) has been operating an X-ray irradiation system with a maximum voltage of 160 kV and 320 kV X-ray tube to test personal dosimeters in accordance with ANSI N13.11-2009 “Personnel Dosimetry Performance- Criteria for Testing”. This standard requires that dosimeters for the photon category testing be irradiated with the X-ray beams appropriate to the ISO beam quality requirements. KHNP-CRI has implemented the fourteen X-ray reference radiation beams in compliance with ISO-4037-1, 2, and 3. When installing the X-ray irradiation system, KHNP-CRI evaluated the uncertainties of dose conversion coefficients for deep and shallow doses, based on “Catalogue of X-ray spectra and their characteristic data – ISO and DIN radiation qualities, therapy and diagnostic radiation qualities, unfiltered X-ray spectra” published by Physikalisch Technische Bundesanstalt (PTB). A CdTe detector (X-123, AMPTEK) with disk type collimators made of tungsten was used to acquire X-ray spectra. The detector was located at 1 m from the center of the target material in the Xray tubes. Six uncertainty factors for the dose conversion coefficients for the fourteen X-ray beams were chosen as follows; the minimum and maximum cut-off energies Emin and Emax, the air density (ρ), the accuracy of the high-voltage of the X-ray tube, statistics of the pulse height spectra and the unfolding method. For example, uncertainty of each quantity for a HK30 beam was calculated to be 0.3%, 2.32%, 0.19%, 1.25%, and 0.13%, and 0.18%, respectively. The combined standard uncertainty for the deep dose conversion coefficient of the HK30 beam was calculated to be 2.67%. The coverage factor corresponding to a 95 percent confidence interval was obtained as k = 1.8 using a Monte Carlo method, which is slightly lower the coverage factor of k = 1.95 for a Gaussian distribution. This seems to result from that two dominant uncertainties, the unfolding uncertainty and minimum cut-off energy uncertainty, follow a rectangular distribution.
A disposal system for spent nuclear fuel divides into two parts; (1) engineered barriers including spent nuclear fuel, canister, buffer and backfill, (2) natural barriers surrounding engineered barriers. Sorption and diffusion are main retardation mechanisms for the migration of released radionuclides. We analyzed the sorption properties of radionuclides for bentonite as a buffer material and collected/ evaluated the distribution coefficients for the purpose of safety assessment for the deep geological disposal of a spent nuclear fuel. Through this, we presented recommended distribution coefficients for radionuclides required for the safety assessment. This work included the radionuclides as follows; alkali and alkaline earth metals (Cs, Sr, Ba), lanthanides (Sm), actinides (Ac, Am, Cm, Np, Pa, Pu, Th U), transition elements (Nb, Ni, Pd, Tc, Zr), and others (C, Cl, I, Rn, Se, Sn). The sorption of radionuclides affected various geochemical conditions such as pH/carbonates, redox potential, ionic strength, radionuclide concentration, kinds and amounts of minerals, and microbes. Among the evaluated radionuclides, Cs, Ni, Pd, and Ra is sensitive to the ionic strength, while Np, Pu, U, Se, and, Tc is sensitive to the redox condition. For the evaluation of distribution coefficients, the data from Sweden (SKB), Finland (Posiva), Switzerland (Nagra), and Japan (JAEA) were collected, analyzed, and the recommended distribution coefficients were suggested.
Th(IV) is a stable actinide that can act as a chemical analogue of U(IV) and Pu(IV), which are important radionuclides in safety assessments of deep geological repositories (DGR). Therefore, to understand the geochemical behaviour of U(IV) and Pu(IV), batch sorption of Th(IV) onto crystalline rocks were performed in oxidising conditions. The distribution coefficients (Kd) of Th(IV) were of particular interest. Gyeongju fresh groundwater (GF) and Gyeongju brackish groundwater (GB) were obtained at the Gyeongju Low and Intermediate Level Radioactive Waste (LILW) Disposal Facility. Crystalline granite (gr) and biotite gneiss (bg) were collected in Gyeongju and Gwacheon respectively and were grounded to a particle size smaller than 150 μm. Sorption samples were continuously shaken for 7 days under 200 rpm at 25°C. The liquid-to-solid ratio (V/m) was 200 L·kg-1. Th(IV) concentrations of the sorption samples were determined by UV-Vis-NIR absorption colorimetry from the formation of Th(IV)-arsenazo III complexes. Although the method allowed the initial Th(IV) concentrations to be determined, the final Th(IV) concentrations fell below the limit of detection (LOD), 6.27×10-9 mol·L-1. Taking the LOD as the final concentrations, conservative Kd were calculated to be 4,410 L·kg-1 for GF-gr and GF-bg, and 7,830 L·kg-1 for GB-gr and GB-bg. The result indicates a strong sorption affinity of Th(IV) onto granite and biotite gneiss within Gyeongju groundwater, suggesting a similar behaviour for U(IV) and Pu(IV). Furthermore, comparison of the conservative Kd obtained from the experiment were compared with existing Kd values of Th(IV). Such analysis and comparison of Th(IV) Kd in various types of groundwater could help locate the optimal site for a DGR in South Korea.
방충설비는 선박의 접안 및 양하역 과정에서 선박의 충격력을 흡수하여 선박과 접안시설을 모두 보호하는 매우 중 요한 역할을 수행한다. 하지만 이에 대한 최근 연구 및 설계 최적화의 노력이 매우 부족해 보인다. 이에 본 논문은 국내 항만 설계기준에서 제시하고 있는 방충재 설계에 사용되는 선박 접안에너지 산정식을 개선, 보완하기 위하여 연구를 수행하였다. 접 안에너지 산정과정에서 선박 및 접안시설의 조건을 고려하기 위하여 적용되는 영향계수의 변화에 따른 영향을 분석하였으며, 이 과정에서 국내외 설계코드에서 제시하고 있는 산정방법과 최신 선박제원, 국내 설계결과가 활용되었다. 분석에는 최신 선박 의 표준제원과 국내에서 실시된 실제 설계결과가 적용되었다. 그 결과, 국내 항만 설계기준에서 제시하고 있는 영향계수 결정방 법은 선박과 접안시설의 조건을 최적으로 반영하기에는 부족하며, 접안에너지가 20%이상 크게 산정되어 방충재 선정과정에서 과다 설계가 야기될 수 있는 것으로 판단되었다. 이에, 국내 항만 설계기준에서 제시하고 있는 영향계수를 선박 및 접안여건을 고려하여 설계할 수 있도록 최적화된 방법을 제시하였다.
The distance between livestock facilities and residential spaces is decreasing. Moreover, livestock odor complaints are increasing due to the large-scale and concentrated livestock breading industry. In order to reduce odor from livestock facilities, bio-curtain that are easy to install and inexpensive are commonly used in Korea. However, there is a lack of basic data on design standards and operation manuals for bio-curtains. The installation density of the bio-curtain material is an important factor that affects the odor reduction rate, increment of the load on the ventilation fans, and the structural stability of the curtain. There are limitations on deriving the design conditions of the bio-curtain by only field experiments targeting invisible air. Therefore, aerodynamic simulation such as CFD (computational fluid dynamics) can be used to obtain quantitative data according to various environmental conditions. Bio-curtain is a porous medium with a complex structure, and it is necessary to derive aerodynamic coefficients to analyze it. In this study, the wind speed and pressure difference according to the design density of the bio-curtain were monitored using the experimental chamber. Using the field results, a pressure resistance curve was created for each flow velocity and installation density. The viscosity and resistance coefficient of the bio-curtain were calculated through the derived resistance curve.
Double slug interaction in downward-facing nucleate boiling was studied to investigate its effect on boiling performance. Two heating surfaces were individually controlled to apply heat flux while their boiling performance were measured. A slug generated from upper heater affect on lower heater to make convectional flow by suction following departure of slug. Moreover, it showed to reduce hovering time of slug bubble on lower heater because it could help bubble departure on lower heater. Meanwhile, a slug generated from lower heater affected on upper heater to make convectional flow by sweeping. However, it showed to increase hovering time of slug bubble on upper heater, because they collapsed to each other. So, the slugs from lower heater enhanced the boiling performance of upper heater with low heat flux condition, but reduced the performance of it with high heat flux condition.
The fluctuating wind pressure of the low rise ratio(f/D=0.1) for the elliptical dome roof was analyzed to compare it with the previous studies of circular dome roofs. Wind tunnel test were conducted on a total of 10 wind directions from 0° to 90° while changing wall height-span ratios(H/D=0.1-0.5). For this, meanCP, rmsCP and wind pressure spectrum were analyzed. The analysis result leads to find differences in the shape of the spectra in the spanwise direction and leeward of the elliptical dome according to the wind direction variations of the elliptical dome roof.
This study investigates the wind pressure characteristics of elliptical plan retractable dome roof. Wind tunnel experiments were performed on spherical dome roofs with varying wall height-span ratios (0.1~0.5) and opening ratios (0%, 10%, 30% and 50%), similar to previous studies of cirular dome roofs. In previous study, wind pressure coefficients for open dome roofs have been proposed since there are no wind load criteria for open roofs. However, in the case of Eeliptical plan retractable dome roof, the wind pressure coefficient may be largely different due to the presence of the longitudinal direction and transverse direction. The analysis results leads to the exceeding of maximum and minimum wind pressure coefficients KBC2016 code.