A cyclone separator is a device that separates solid particles from a fluid using centrifugal force and gravity in its inner chamber. Among cyclone separators, the separator that uses water as a working fluid is called as hydrocyclone separator, which has been developed for the purpose of dehydrating solid mixtures with a proportion of solids floating in liquids greater than 1, such as soil, coal, and cement slurry. In this paper, a hydrocyclone was designed based on the previously proposed design method, and how different the performance is from the targeted value was investigated using the computational fluid dynamics.
Behavioral modulation by genetic changes garners a special attention nowadays as an effective means of revealing genetic function on the one hand and broadening the scope of in situ monitoring on the other hand. The cGMP-dependent protein kinase was treated to the western flower thrips, Frankliniella occidentalis. Automatic recognition techniques and computational methods were utilized to investigate behavioral changes across photo- and scoto-phases. Movement behaviors are objectively expressed according to parameter extraction and data structure visualization in different light phases. By comapring with the individuals without treatment, activities of treated thrips were changed including decrease in circadian rhythm. Usefulness of automatic monitoring of insect movement in different genetic strains is further discussed for providing useful information on monitoring and diagnosing natural and unntatural genetic disturbances.
본 논문에서는 전산점근해석기법을 사용하여 복합재료 보에 대한 경계층 해를 계산하고, ANSYS 결과와 비교 검증하였다. 경계층 해는 내부해와 순수 경계층 효과의 합으로 표현되기 때문에, 내부 및 경계층에 대한 수학적으로 엄밀한 정식화를 요구한다. 전산점근 해석기법은 수학적으로 매우 강력한 기법으로, 이러한 문제에 유용하다. 그러나 경계층과 내부 해들의 연결을 시키기 쉽지 않은데, 본 연구에서는 가상일의 원리를 통해 생브낭의 원리와 내부 및 경계층 문제를 체계적으로 분리하였다. 경계층 해는 팝코비치-패들 고유 벡터를 계산하여, 실수부와 허수부 벡터들의 선형 조합으로 표현하고, 내부 해의 워핑 함수들을 보상할 수 있도록 최소오차 자승법을 적용하였다. 계산된 해들은 2차원 유한요소 해석 결과와 비교하여 정성적일 뿐만 아니라 정량적으로도 잘 일치하는 결과를 얻었다.
This study investigated the noise reduction effect according to the structure of the sound-absorption and insulating materials in order to maximize the noise reduction effect in various noise environments. For this purpose, the transmission loss according to the change in hole size of the performated plate in sound-absorption and insulating board was predicted using an CAE model. The sound-absorption and insulating board was modeled and the computation of the transmission loss was performed after applying the physical properties and boundary conditions. The pure sounds of 32Hz to 4,000Hz were generated, and the analysis was performed by changing the diameter and pitch of the perforated plate. It was confirmed that the influence of the diameter and pitch of the perforated plate is closely related to the structure that make up the sound-absorption and insulating material. In order to effectively reduce the variously changing noises, it is believed that a method of improving transmission loss for each frequency band of interest is needed by changing the structure of the sound-absorption and insulating material so that the diameter and pitch of the perforated plate can be changed.
Passengers on public buses operating in the metropolitan area are exposed to the closed indoor air for minutes to hours. The indoor air quality of buses is mostly controlled through ceiling-mounted ventilation and filtration devices. A simulation study using a commercial code was conducted for fluid flow analysis to evaluate the potential effectiveness of an air purifier that can be inserted into bus windows to supply clean air from the outside to the inside. As a result of field measurements, the average CO2 concentration inside the bus during morning and evening rush hours ranged from 2,106±309 ppm to 3,308 ± 255 ppm depending on the number of passengers on board. This exceeded the Guideline for Public Transportation. The optimal installation position of an air purifier appeared to be the front side of the bus. In fact, even a low diffusing flow velocity of 0.5m/s was effective enough to maintain a low concentration of CO2 throughout the indoor space. Based on numerical analysis predictions with 45 passengers on board, the maximum CO2 concentration in the breathing zone was 2,203 ppm with the operation of an air purifier.
The importance of urban green space creation is increasingly recognized as the most realistic and efficient approach for fine dust mitigation in urban areas. Particularly considering the characteristics of domestic cities, the application of buffer green spaces along roads can maximize the efficiency of fine dust reduction without the need for separate green space creation. Accordingly, this study analyzed the fine dust mitigation effects based on the types of plantings in the central dividers and roadside trees in Jeonju City, Jeollabuk-do. To do this, we controlled various external variables of urban space and considered the planting arrangement types in the central dividers, carrying out the analysis using a CFD simulation. The simulation results confirmed that the central dividers with plantings demonstrated more effective ultrafine dust reduction than those without. Moreover, the arrangement of roadside trees showed a greater ultrafine dust reduction effect when adopting a multilayered structure compared to a single layer. Based on these findings, we concluded that installing both trees and shrubs simultaneously in the central dividers and along roads was effective for ultrafine dust mitigation. On this basis, we quantified the dust reduction effects of plants in urban street environments and proposed planting guidelines for roadside green spaces to improve air quality.
Hydraulic cylinders are hydraulic system parts widely used in various industries such as construction machinery, machine tools, robots, automobiles, and automation systems. The maximum capacity of vane pumps used in machine tools is 70bar, but the actual operating pressure is less than 50bar. The allowable pressure of a commercial hydraulic cylinder is 140 - 210 bar, so it is heavy and uneconomical because it uses thick and strong materials. In this paper, we intend to develop a small and lightweight hydraulic cylinder suitable for the allowable pressure of 50bar or less so that it can be used in the hydraulic system field. In order to develop a compact hydraulic cylinder, flow analysis, and structural analysis were conducted under piston forward and backward conditions. The analyzed flow rate value was calculated to be suitable for the operation of the hydraulic cylinder. As a result of comparing the stress calculated under the forward/backward condition of the piston with the yield stress of the material, the safety factor was calculated to be more than 2.5.
Micro-climate measurements and computational fluid analysis were conducted to use it as basic data for the preservation and management of the old house of Kim Myung-kwan, a traditional building that is National Folk Cultural Property No. 26. As a result of the actual measurement, the temperature and humidity are relatively evenly distributed indoors unlike outdoors, but the temperature and humidity vary depending on the time change and the installation location in the outdoors. It was found that the temperature increases after dawn and the temperature varies depending on the installation position around 14:00–15:00, when the temperature becomes the highest. In particular, the temperature was high at the outdoor measurement point adjacent to the building and the fence. As a result of the computational fluid analysis, the temperature was high in the buildings and fences in the old house or in the area adjacent to the building, and it was about 1℃ higher than the surrounding area. In this area, it is judged that the thickening of wood will occur more severely than in other locations, and special preservation management is required.
Despite the massive impact of COVID-19 on society, beyond the numbers of confirmed cases and deaths, there remains a lack of large-scale data depicting the effects of the virus on the society of the Republic of Korea. To fill this gap, we collected 1.822 million news articles with more than 1 billion morphemes from January 2020 to June 2022, creating a Korean version of the Coronavirus Corpus. This corpus is introduced in the current study. In addition, to demonstrate how such massive corpus can be utilized, we conducted information theoretical analyses to see how the stance of the press media on topics such as vaccines and social distancing affected the COVID-19 situation in the Republic of Korea. Specifically, we utilized several computational linguistic skills including concordance building and sentiment analysis through both traditional and machine learning techniques and measured the transfer entropy to estimate the impact with information theory. The results suggest that the overall impact of the press media on the society was minimal to non-existent.
Failure to comply with the performance test requirements for the centrifugal pumps at power plants often results in performance dissatisfaction as a result of field tests. This study proposed a method of reducing the uncertainty of the field test results by evaluating the systematic error in the measurement system caused by failure to follow the test requirements using the computational fluid dynamics(CFD) technique. As a result of the evaluation of the systematic error and reflecting it in the performance test data, it was confirmed that the error occurred at a constant rate with respect to the flowrate and that the pump, which showed a difference in performance actually had the same performance.
In order to analyze the pressure drop of the fluid passing through the hydraulic coupler, a flow model using the Computational Fluid Dynamics (CFD) analysis technique was developed and the fluid flow rate and pressure distribution inside the coupler were analyzed. The analysis model was corrected by comparing the pressure drop measurement using a 6.35mm hydraulic coupler with the ISO reference value and the simulation prediction value. Using the calibrated model, the flow rate and pressure drop of 13 types of hydraulic couplers distributed on the market were analyzed, and their performance was determined by comparing them with ISO reference values. In the case of type A coupler, the pressure drop was generally higher than the ISO reference value, and in the case of type B coupler, the pressure drop was similar to or lower than the ISO reference value. It was confirmed that the complex flow analysis inside the hydraulic coupler could be easily performed through computational fluid dynamics (CFD) modeling, and based on this, problems could be identified and performance could be improved performance.
Among the various causes of the vibration problem of the radial sluice gate used in Saemangeum, the effect of flow-induced vibration was studied by the method of computational fluid analysis. In this study, the effect on the flow-induced vibration of the Saemangeum radial sluice gate was evaluated by 2D unsteady flow numerical analysis using ANSYS Fluent. Gate opening cases of 0.2m, 0.3m, 0.4m, 0.5m, and 1.0m were analyzed. As a result, the flow-induced vibration characteristics due to the instability of turbulent flow were observed through FFT analysis. As the gate opening increases, the frequency of the maximum amplitude moves gradually to a lower frequency region with the reduction of the magnitude. Therefore the flow-induced vibration effects can be considered as small with the gate opening increase.
In general, small and medium-sized computer rooms do not have access floors for reasons of increased floor height and increased construction cost. Therefore, the air conditioning method used here applies the method of directly blowing the cold air of the air conditioner into the computer room. In this case, the hot/cold air is not separated, and as the hot air is recirculated, it is re-introduced to the front of the server rack, resulting in a problem that the server cooling efficiency is decreased. In addition, in such a computer room structure, it is difficult to configure and install a containment system. In this study, we tried to understand the problem of the formation airflow in the case of using the existing air conditioning method, and to find a method of configuring the air conditioning environment to improve the cooling efficiency. The purpose of this study was to understand the airflow/temperature distribution in the computer room using the CFD simulation method. In addition, the thermal characteristics of various air-conditioning environments such as the location of the CRAC cold air discharge location, the layout between server rack and CRAC and the containment were reviewed.
When operating at high speed on a vessel, a high-speed planing hull occurs nonlinear movements such as stern trim and large sprays. This phenomenon results in the hindrance of stability, embarkation and mission performance. Excessive stern trim during the slides decreases propulsion efficiency and visibility of helmsman due to porpoising and changing the attack angle of the fluid flowing into the propeller. To improve these problems, an outboard floating plate is installed on the cavitation plate to greatly suppress or eliminate the porpoising phenomenon. In this study, to analyze the performance of the floating plate mounted on the outboard engine, numerical analysis was carried out to investigate the resistance applied to the floating plate and the lift generated according to the change of the angle of attack and the flow velocity. The reliability of the floating plate mounted on the outboard engine was verified by applying the floating plate according to the speed and the angle of attack.
국내 자연재난 피해의 50%는 태풍에 의해 발생하며, 최근 태풍에 동반된 강풍에 의한 인명 피해가 빈번하게 발생하고 있다. 재난 피해 저감을 위한 재난 안전 교육의 일환으로 국내의 강풍체험시설은 대부분 제한된 공간에 설치되어 체험을 위한 내부 유동장의 효과적 설계가 필요하다. 이를 위해 본 연구에서는 전산유체역학 기법을 이용하여 강풍 체험장의 내부 유동장을 해석하였으며, 내부 구조 형상으로 인해 발생하는 압력 저항을 공간 저항으로 정의하였다. 기존 강풍 체험장에 대한 분석 결과 기존의 수평 방향 풍로 구조로 인해 매우 불균질한 내부 유동장이 형성되고 큰 공간 저항이 발생함을 확인하였다. 이를 개선하기 위하여 풍로를 수직 방향으 로 변경함으로써 공간 저항을 80% 가까이 감소시킬 수 있음을 확인하였으며, 체험장 내부 유동장의 균질도도 크게 향상되어 실질적 강풍 체험장 구현이 가능함을 확인하였다.
The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.
본 논문은 하수관 보강 방법 중 보강튜브경화공법(CIPP)의 종점부 미경화 문제를 해결하기 위해 설계된 증기이송튜브 시스템에 대한 유동해석 결과를 보고한다. 설계된 증기이송튜브의 유동해석을 위해 SolidWorks Flow Simulation을 이용하여 해석을 수행하였다. 100mm, 150mm, 200mm의 직경을 갖는 증기이송튜브에 대한 유동 흐름 및 온도 분포가 유동을 해석을 통해 검토되었다. 해석 결과를 통해 증기이송튜브의 직경이 증가함에 따라 경화온도를 만족하는 CIPP 내부 길이가 증가하는 것이 확인되었다. 또한, 직경 200mm를 제외한 모든 직경의 증기이송튜브의 입구에서 증기 역류 현상이 나타남을 확인하였다. 이에 증기이송튜브의 최적 직경은 200mm로 결정되었으며, 이에 대한 유동해석을 통해 증기주입을 시작하고 350초 경과 이후에 CIPP 내 모든 길이에서 경화온도를 만족하는 것을 확인하였다.
The purpose of this study was to explore if, what kinds of, how much computational thinking (CT after this) practices could be included in STEAM programs, and what kinds of CT practices could be improved to make STEAM revitalized. The CT analyzing tool with operational definitions and its examples in science education was modified and employed for 5 science-focused and 5 engineering-focused STEAM programs. There was no discerning pattern of CT practices uses between science and engineering STEAM programs but CT practices were displayed depending on their topics. The patterns of CT practices uses from each STEAM program could be used to describe what CT practices were more explored, weakly exposed, or missing. On the basis of these prescription of CT practices from each STEAM program, the researchers could develop the weakly exposed or missing CT practices to be improved for the rich experience in CT practices during STEAM programs.
본 논문에서는 상용코드인 ANSYS CFX를 통한 해양레저 스포츠 및 야외 활동 시 사용 가능한 휴대용 수평축 수차의 유입유속(U) 및 주속비(TSR, Tip Speed Ratio) 변화에 따른 성능해석을 수행하였으며, 해석결과 및 유동장 분석을 통해 설계에 대한 검토 및 장치의 성능을 확인하였다. 또한, 추가적으로 블레이드의 피치각도(αpitch) 변화에 따른 성능해석을 통해 수차의 성능개선에 필요한 데이터를 획득하고자 하였다. 본 논문의 연구 결과 수치해석 케이스 중 주속비 4인 경우, 모든 유입속도 및 블레이드 피치 각도에서 가장 높은 성능을 보였으며, 설계 유속 이하의 일부 조건에서도 설계 출력인 30 W 이상의 출력을 보였다. 그리고 수치해석 케이스 중 가장 높은 출력과 출력계수는 유입유속 1.5 m/s, 블레이드 피치 각도 3°, 주속비 4에서 보였으며, 출력 약 85 W, 출력계수 약 0.30이었다.
본 연구에서는 대면적을 지니는 CDI 모듈의 흐름 향상을 위하여 유체가 들어가는 유입구로부터 면적이 증가하는 직사각형 형태의 유로를 설계하였다. 이를 바탕으로 설계된 모듈 형태에 대해 공급수의 흐름성과 사영역의 유무를 파악하였고 CFD 전산 유체 역학 프로그램을 통해 유로 내의 내부 압력, 유선 그리고 속도 벡터 분포를 분석하였으며 실제 흐름 관측과 CFD 프로그램을 비교 분석하였다. 실험 결과 모든 유속 10, 20, 30 mL/min에서 유로 내 사영역이 거의 발생하지 않았으며 공급수의 흐름성도 일정하게 유지되어 추후 대면적을 가지는 CDI 공정에 적용이 가능할 것이라 판단된다.