In order to broaden the range of application of light weight aluminum alloys, it is necessary to enhance the mechanical properties of the alloys and combine them with other materials, such as cast iron. In this study, the effects of adding small amounts of Cu and Zr to the Al-Si-Mg based alloy on tensile properties and corrosion characteristics were investigated, and the effect of the addition on the interfacial compounds layer with the cast iron was also analyzed. Although the tensile strength of the Al-Si-Mg alloy was not significantly affected by the additions of Cu and Zr, the corrosion resistance in 3.5 %NaCl solution was found to be somewhat lowered in this research. The influence of Cu and Zr addition on the type and thickness of the interfacial compounds layer formed during compound casting with cast iron was not significant, and the main interfacial compounds were identified to be Al5FeSi and Al8Fe2Si phases, as in the case of the Al-Si-Mg alloys.
KAERI에서는 파이로프로세싱에서 발생하는 금속폐기물의 부피 및 무게 감량을 위해 고방사성 장반감기 핵종을 포함하는 anode sludge내 NM의 고화매질로써 폐피복관과 첨가금속을 재활용하는 연구를 진행하고 있다. 본 연구에서는 Cr 함량을 조절한 Zr-17Cr-8NM, Zr-22Cr-8NM, Zr-27Cr-8NM 합금을 유도용융을 통해 제조하였고, 전기화학적 부식시험을 실시하여 부 식특성을 평가하였다. 모든 조성에서 기존 연구 중인 Zr계 합금고화체 조성보다 우수한 부식특성을 나타냈다. 또한 Zr-22Cr- 8NM 시편의 부식시험 후 침출용액 조성 분석 결과, 500 mV 전압 조건 이하에서는 NM 침출이 없었고 이를 통해 우수한 화 학적 안정성을 갖는 합금고화체 조성을 확보하였다.
As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of 800ºC and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above 800ºC at the various oxides (SiO2, Al2O3, MgO and Y2O3) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at 1000oC and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at 900oC and 1000oC, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using Y2O3. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at Y2O3 added sintered stainless steel.
가압경수로의 일차계통 제염을 위해 개발된 HYBRID 제염제의 재료부식 특성을 틈부식 시험방법을 사용하여 수행하였다. 기존 제염제의 부식특성과 비교하기 위하여 상용 제염제인 OA, CITROX 제염제의 부식특성도 함께 평가하였다. 시험재료 는 가압경수로의 일차계통의 주 재료인 Alloy 600과 304 SS을 대상으로 시험하였다. 틈부식 시험은 가혹조건의 부식시험 으로써 내식성이 강한 원전 구조재료의 건전성을 짧은 시간에 잘 확인할 수 있었다. 시험결과 OA와 CITROX 제염제에서는 crevice 시편 표면에 pitting과 IGA가 나타났으나 HYBRID 제염제에서는 국부부식이 전혀 발생되지 않았다. 무게감소 측정 결과 HYBRID 제염조건에서는 1.3×10-3 μm/h 이하의 매우 낮은 부식속도를 나타내었다. 반면에, OA 제염제의 경우 Alloy 600은 4.0×10-2 μm/h 로 비교적 균일한 부식율을 나타내었으나, 304 SS의 경우 pH = 2.0 이하에서 급격한 가속부식을 나타 내었다. HYBRID 제염제의 경우 일반부식에서뿐만 아니라 crevice 부식조건에서도 거의 부식이 일어나지 않아 PWR 계통 제염 시 산화막 용해 후 제염제가 계통재료에 노출되어도 재료의 건전성이 입증되었다.
The electrochemical performance for the corrosion of zinc anodes according to particle size and shape as anode in Zn/air batteries was study. We prepared five samples of Zn powder with different particle size and morphol- ogy. For analysis the particle size of theme, we measured particle size analysis (PSA). As the result, sample (e) had smaller particle size with 10.334 µm than others. For measuring the electrochemical performance of them, we measured the cyclic voltammetry and linear polarization in three electrode system (half-cell). For measuring the morphology change of them before and after cyclic voltammetry, we measured Field Emission Scanning Electron Microscope (FE- SEM). From the cyclic voltammetry, as the zinc powder had small size, we knew that it had large diffusion coefficient. From the linear polarization, as the zinc powder had small size, it was a good state with high polarization resistance as anode in Zn/air batteries. From the SEM images, the particle size had increased due to the dendrite formation after cyclic voltammetry. Therefore, the sample (e) with small size would have the best electrochemical performance between these samples.
To improve the chemical stability of metal, the ceramic coatings on metallic materials have attracted interest from many researchers due to the chemical inertness of ceramic materials. To endure strong acids, SiOC coating on metal substrate was carried out by dip coating method using 20wt% polyphenylcarbosilane solution; SiC powder was added to the solution at 10wt% and 15wt% to improve the mechanical properties and to prevent cracks of the film. Thermal oxidation as a curing step was carried out at 200˚C for crosslinking of the polyphenylcarbosilane, and the coating samples were pyrolysized at 800˚C under argon to convert the polyphenylcarbosilane to SiOC film. The thicknesses of the SiOC coating films were 2.36μm and 3.16μm. The quantities of each element were measured as SiO1.07C6.33 by EPMA, and it can be confirmed that the SiOC film from polyphenylcarbosilane was formed in a manner that was carbon rich. The hardness of the SiOC film was found to be 3.2Gpa through nanoindentor measurement. No defect including cracks appeared in the SiOC film. The weight loss of the SiOC coated stainless steel was within 2% after soaking in 10% HCl solution at 80˚C for one week. From these results, SiOC coating shows good potential for application to protect against severe chemical corrosion of stainless steel.
본 논문은 지하매설 철 구조물의 전기적 부식방지를 위해 Mg 희생양극을 사용하는 부식방지 기술에 대한 연구 또한 활발히 진행되고 있다. Mg 희생양극은 지하에 매설되는 철 구조물(파이프, 탱크, 파일, 고정 앵커 등)을 부식으로부터 보호하기 위하여 사용되는 것이다. 본 연구에서는 종래의 산화 소화용 표면 보호재로 이용되고 있는 비교적 값이 싼 CaCl2 염화물을 이용하여 마그네슘 합금제조 시 CaCl2 염화물의 표면보호 효과 및 제조된 Mg-Ca 합금들의 전기화학적 특성을 조사하였다 금속 Ca가 아닌 산화방지 및 소화 용제로 이용되고 있는 염화물(CaCl2)을 이용하여 자연부식 전위 값이 -1.695VSCE 이하, 사용효율도 59% 이상인 Mg-Mn-Ca 희생양극제의 제조기술을 확립하였다.
This work presents mechanical properties and corrosion resistance of duplex stainless steels obtained through powder metallurgy starting from austenitic, martensitic powders by controlled addition of alloying elements in the right quantity to obtain the chemical composition of the structure similar to biphasic one. In the mixes preparations the Schaffler's diagram was taken into consideration. Prepared mixes of powders have been sintered in a vacuum furnace with argon backfilling. After sintering rapid cooling was applied using nitrogen. Corrosion properties have been studied through electrochemical methods in 1M NaCl.
Mg-8Li-4AI 합금의 부식특성에 미치는 Y의영향을 전기화학적 분극시험 및 침지시험을 통하여 조사하였다. 전기 화학적 분극시험에서는 Y첨가량이 증가함에 따라 활성화 영역이 감소하엿고 부식전위가 증가하였으며, Y이 4.08wt% 첨가된 경우가 Y이 첨가되지 않은 경우에 비해 부식속도가 크게 감소하였다. 침지시험에서도 Y의 첨가량이 증가함에 따라 Y을 첨가하지 않은 시편에 비하여 무게감량 및 부시속도가 감소하였으며, Y이 첨가되지 않은 합금의 부식속도는 침지시간에 따라 급격히 증가하였지만 Y이 첨가되지 않은 합금의 부식속도는 침지시간에 따라 급격히 증가하였지만 Y이 4.8wt% 첨가된 합금은 96시간 이후부터 더 이상 증가하지 않았다. 이러한 결과는 Y 화합물(Mg24Y5)이 α/β계면에서 희생 양극으로 작용하였기 때문이라고 생각된다. 따라서 Y의 첨가는 Mg-Li-AI 합금의 내식성을 향상시키는 역할을 한 것으로 판단된다.
Background : Corrosion is one of the most devastating problems faced by most industries. Mild steel has played a vital role in various fields due to the excellent mechanical properties of mild steel such as low density, high strength-to-weight ratios, good environmental stability, high thermal conductivity, and corrosion resistance. Methods and Results : The total phenolic contents (TPC) and total flavonoid contents (TFC) of the methanolic extract of C. grandiflora and R. verniciflua leaf have been examined, and its corrosion inhibition performance was investigated by weight loss and electrochemical impedance spectroscopy (EIS) and polarization measurements. The surface morphology of mild steel was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and by atomic force microscopy (AFM). The percentage composition of polyphenolic compounds was found to be higher in C. grandiflora and R. verniciflua plant extracts, and it was proved to be a superior, eco-friendly, and anti-corrosive inhibitor for mild steel in 1M of H2SO4. The Tafel polarization studies indicate that the plant extract is a mixed-type inhibitor. Scanning electron microscopy/energy -dispersive X-ray spectroscopy (SEM-EDS), and atomic force microscopy (AFM) studies confirmed the formation of a protective film on the metal surface. The corrosion inhibition of the C. grandiflora and R. verniciflua plant extracts was characterized by Fourier transform infrared (FT-IR), UV-visible spectra, and wide-angle X-ray diffraction (XRD) studies; these show the strong interaction between the metal surface and the inhibitor. Conclusion : The methanolic extract was prepared the two different plants like C. grandiflora, and R. verniciflua was studied the corrosion inhibition on the mild steel specimen in acidic medium through various methods involving weight loss measurements, EIS, and potentiodynamic polarization. The results shows that the C. grandiflora, and R. verniciflua plant extracts illustrate an effective corrosion inhibitor for mild steel with good anticorrosion properties in acidic environmen
High temperature corrosion is a major issue in waste-to-energy (WTE) facilities because it effects running cost and energy utilization efficiency. Corrosion of heating surfaces in WTE boilers is a complex phenomenon. The purpose of this study was to analyze the high temperature corrosion characteristics of WTE boiler tubes and to determine the influences of high temperature corrosion on heat exchange. Heating surface corrosion samples for this research were obtained from a superheater tube in municipal solid refuse fuel-fired power plant. Surface morphology, microstructure and phase composition were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis. The morphology of the heating surface was rough and had porous structures. The chlorine content of the surface was 7.4wt.% and the samples were mainly composed of hematite (Fe2O3) and magnetite (Fe3O4). The thermal conductivity of the corrosion samples was characterized using thermal conductivity measurements and was found to be 2.33 W/mK at 500oC. This result, which is 17 times less than that of boiler tube carbon steel (40.40 W/mK), indicates that corrosion of WTE boiler tubes is closely related to a decrease in boiler heat exchange efficiency.