Republic of Korea is building a multi-layered missile defense system against North Korea’s growing ballistic missile threat. To maximize the intercept performance of a multi-layered missile defense system, it is important to develop an efficient engagement plan that considers the interceptable time/space of each interceptor system for ballistic missiles. To do so, it is necessary to predict the flight trajectory of the ballistic missile, which must be done within a short time considering the short battlefield environment and the speed of the ballistic missile. This study presents a model for rapid trajectory prediction of ballistic missiles using the kinetic characteristics of each flight phase(thrust phase, midcourse phase, and re-entry phase) of ballistic missiles, a method for estimating kinetic information from ballistic missile observation data(time and position), and a mathematical analysis of the equations of motion of ballistic missiles.
기후변화와 식품공급망의 복잡성 증대로 식품 위해요소 의 발생 경로와 패턴이 다변화됨에 따라, 과학적 예측과 선 제적 개입이 가능한 예방형 식품안전 관리체계의 필요성이 대두되고 있다. 본 연구는 기후·환경 요인이 식품 위해요소 에 미치는 영향을 분석함으로써, 기후 민감성이 높은 위해 요소를 식별하고 예측 가능성과 주요 환경인자를 도출하였 다. 아울러 국내외 데이터 기반 위해예측 시스템의 운영 사 례를 비교·분석함으로써, 식품위해예측센터의 실질적 운영 과 역할을 위한 발전방향을 제시하였다. 본 연구를 통해 향 후 식품위해예측센터가 식품안전 정책의 과학화와 지능화 를 이끄는 전략적 플랫폼으로 기능하고, 예방 중심의 관리 체계로의 전환을 유도할 수 있도록 실효적 토대와 정책적 방향성을 제공하고자 한다.
This study aims to improve the interpretability and transparency of forecasting results by applying an explainable AI technique to corporate default prediction models. In particular, the research addresses the challenges of data imbalance and the economic cost asymmetry of forecast errors. To tackle these issues, predictive performance was analyzed using the SMOTE-ENN imbalance sampling technique and a cost-sensitive learning approach. The main findings of the study are as follows. First, the four machine learning models used in this study (Logistic Regression, Random Forest, XGBoost, and CatBoost) produced significantly different evaluation results depending on the degree of asymmetry in forecast error costs between imbalance classes and the performance metrics applied. Second, XGBoost and CatBoost showed good predictive performance when considering variations in prediction cost asymmetry and diverse evaluation metrics. In particular, XGBoost showed the smallest gap between the actual default rate and the default judgment rate, highlighting its robustness in handling class imbalance and prediction cost asymmetry. Third, SHAP analysis revealed that total assets, net income to total assets, operating income to total assets, financial liability to total assets, and the retained earnings ratio were the most influential factors in predicting defaults. The significance of this study lies in its comprehensive evaluation of predictive performance of various ML models under class imbalance and cost asymmetry in forecast errors. Additionally, it demonstrates how explainable AI techniques can enhance the transparency and reliability of corporate default prediction models.
Early warnings have been developed to provide rapid earthquake information, allowing people to prepare as much time as possible. However, since it takes several seconds for an earthquake warning to be issued, the blind zone is inevitable. To reduce the blind zone, information from a single observatory is used to operate an on-site earthquake warning. However, false and missed alarms are still high, requiring continued research and validation. This study predicted Peak Ground Acceleration (PGA) using the characteristic data to reduce false and missed alarms in on-site earthquake warnings. A machine learning prediction model was created using the initial P-wave parameters developed from the characteristic data to achieve this. Then, the model was used to predict the maximum ground acceleration in the southeastern region of the Korean Peninsula. The expected results for six target earthquakes were confirmed to have a standard deviation within 0.3 compared to the observed PGA and the values within ±2 sigma. This method is expected to help develop an on-site early warning system for earthquakes.
This study develops a machine learning-based tool life prediction model using spindle power data collected from real manufacturing environments. The primary objective is to monitor tool wear and predict optimal replacement times, thereby enhancing manufacturing efficiency and product quality in smart factory settings. Accurate tool life prediction is critical for reducing downtime, minimizing costs, and maintaining consistent product standards. Six machine learning models, including Random Forest, Decision Tree, Support Vector Regressor, Linear Regression, XGBoost, and LightGBM, were evaluated for their predictive performance. Among these, the Random Forest Regressor demonstrated the highest accuracy with R2 value of 0.92, making it the most suitable for tool wear prediction. Linear Regression also provided detailed insights into the relationship between tool usage and spindle power, offering a practical alternative for precise predictions in scenarios with consistent data patterns. The results highlight the potential for real-time monitoring and predictive maintenance, significantly reducing downtime, optimizing tool usage, and improving operational efficiency. Challenges such as data variability, real-world noise, and model generalizability across diverse processes remain areas for future exploration. This work contributes to advancing smart manufacturing by integrating data-driven approaches into operational workflows and enabling sustainable, cost-effective production environments.
최근 급격한 기후 변화로 인해 도로 교통사고의 발생 빈도가 증가하고 있으며, 특히 겨울철에 자주 발생하는 도로 살얼음(블랙아이 스) 현상이 주요 원인 중 하나로 지목되고 있다. 도로살얼음의 형성 메커니즘은 다양한 요인에 따라 복합적으로 작용하며, 당시의 도 로 기상 조건과 도로의 기하학적 구조에 따라 얼음의 형태 및 강도가 결정된다. 그중에서도 도로 노면 온도는 도로살얼음 형성에 중 요한 요소로, 여러 나라에서 겨울철 교통안전 평가를 위한 주요 지표로 사용되고 있다. 그러나 현재 도로 노면 온도에 대한 명확한 정 의가 부족할 뿐만 아니라, 측정 방법에 따라 계측 편차와 온도 손실 등 여러 한계가 존재해 정확한 온도 측정이 어려운 실정이다. 이 에 본 연구는 지중 깊이에 따른 온도 데이터와 도로 기상 데이터를 결합하여 보다 정밀한 도로 노면 온도 예측 방법을 제시하는 것을 목적으로 한다. 연구를 위해 지중 깊이 2cm, 3cm, 4cm, 5cm, 7cm, 9cm, 15cm, 20cm에 각각 온도 센서를 설치하였으며, 기상 데이터는 해당 지점에서 2m 떨어진 AWS(Automatic Weather System)를 통해 대기 온도, 습도, 강수량, 일사량 등의 정보를 수집하였다. 이를 바 탕으로 지중 온도와 기상 조건의 상관관계를 활용하여 노면 온도를 예측하는 방법론을 도출하였다. 본 연구의 결과는 도로 노면 온도 예측의 정확성을 향상시킬 뿐만 아니라, 새로운 접근 방식을 통해 노면 온도의 정의를 재정립하는 데 기여할 것으로 기대된다.
The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
PURPOSES : This study aimed to predict the number of future COVID-19 confirmed cases more accurately using public and transportation big data and suggested priorities for introducing major policies by region. METHODS : Prediction analysis was performed using a long short-term memory (LSTM) model with excellent prediction accuracy for time-series data. Random forest (RF) classification analysis was used to derive regional priorities and major influencing factors. RESULTS : Based on the daily number of COVID-19 confirmed cases from January 26 to December 12, 2020, as well as the daily number of confirmed cases in Gyeonggi Province, which was expected to occur on December 24 and 25, depending on social distancing, the accuracy of the LSTM artificial neural network was approximately 95.8%. In addition, as a result of deriving the major influencing factors of COVID-19 through random forest classification analysis, according to the number of people, social distancing stages, and masks worn, Bucheon, Yongin, and Pyeongtaek were identified as regions expected to be at high risk in the future. CONCLUSIONS : The results of this study can help predict pandemics such as COVID-19.
Truck no-show behavior has posed significant disruptions to the planning and execution of port operations. By delving into the key factors that contribute to truck appointment no-shows and proactively predicting such behavior, it becomes possible to make preemptive adjustments to port operation plans, thereby enhancing overall operational efficiency. Considering the data imbalance and the impact of accuracy for each decision tree on the performance of the random forest model, a model based on the Borderline Synthetic Minority Over-Sampling Technique and Weighted Random Forest (BSMOTE-WRF) is proposed to predict truck appointment no-shows and explore the relationship between truck appointment no-shows and factors such as weather conditions, appointment time slot, the number of truck appointments, and traffic conditions. In order to illustrate the effectiveness of the proposed model, the experiments were conducted with the available dataset from the Tianjin Port Second Container Terminal. It is demonstrated that the prediction accuracy of BSMOTE-WRF model is improved by 4%-5% compared with logistic regression, random forest, and support vector machines. Importance ranking of factors affecting truck no-show indicate that (1) The number of truck appointments during specific time slots have the highest impact on truck no-show behavior, and the congestion coefficient has the secondhighest impact on truck no-show behavior and its influence is also significant; (2) Compared to the number of truck appointments and congestion coefficient, the impact of severe weather on truck no-show behavior is relatively low, but it still has some influence; (3) Although the impact of appointment time slots is lower than other influencing factors, the influence of specific time slots on truck no-show behavior should not be overlooked. The BSMOTE-WRF model effectively analyzes the influencing factors and predicts truck no-show behavior in appointment-based systems.
This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the ‘Cheongmyeong Gaual’ variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37′ N 128°32′ E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.
PURPOSES : Due to the frequent occurrence of accidents on icy roads during nighttime, it would be advantageous to notify road managers and drivers about the most perilous areas. This would allow road managers to treat the icy roads with de-icing chemicals and enable drivers to be better prepared for potential hazards. Essential information about pavement temperature is required to identify icy spots on the road. METHODS : With the goal of estimating nighttime pavement temperature on the National Highways in Korea using atmospheric data, the current study investigated a widely recognized forecasting method known as deep neural network (DNN). To achieve this objective, the input data for the models were gathered from the weather agency's website. The dataset comprised of relative humidity, air temperature, dew point temperature, as well as the differences in air temperature and humidity between two consecutive days. RESULTS : In order to assess the effectiveness of the built DNN model, a comparison was made using baseline pavement temperature data gathered through an infrared-based pavement temperature sensor installed in a highway patrol car. The results indicated that the DNN model achieved a mean absolute error (MAE) of 0.42 and a root mean square error (RMSE) of 0.62. In comparison, a conventional regression model yielded an MAE of 2.07 and an RMSE of 2.64. Thus, the DNN model demonstrated superior performance in comparison to the conventional regression model. CONCLUSIONS : Considering the increasing focus on preventive maintenance, these newly developed prediction models can be implemented proactively as a preventive measure against icing. This proactive approach has the potential to significantly improve traffic safety on winter roads.
사출성형공정은 열가소성 수지를 가열하여 유동상태로 만들어 금형의 공동부에 가압 주입한 후에 금형 내에서 냉각시키는 공정으로, 금형의 공동모양과 동일한 제품을 만드는 방법이다. 대량생산이 가능하고, 복잡한 모양이 가능한 공정으로, 수지온도, 금형온도, 사출속도, 압력 등 다양한 요소들이 제품의 품질에 영향을 미친다. 제조현장에서 수집되는 데이터는 양품과 관련된 데이터는 많은 반면, 불량품과 관련된 데이터는 적어서 데이터불균형이 심각하다. 이러한 데이터불균형을 효율적으로 해결하기 위하여 언더샘플링, 오버샘플링, 복합샘플링 등이 적용되고 있다. 본 연구에서는 랜덤오버샘플링(ROS), 소수 클래스 오버 샘플링(SMOTE), ADASTN 등의 소수클래스의 데이터를 다수클래스만큼 증폭시키는 오버샘플링 기법을 활용하고, 데이터마이닝 기법을 활용하여 품질예측을 하고자 한다.
낙동강 하구 기수생태 복원이 본격으로 논의가 진행 전인 2016년까지는 하류 수위의 예측을 위해 하구에서 수km 떨어진 기존 조위관측소(부산 및 가덕도)의 측정 자료를 활용하여 분석을 수행하였지만, 조위와 위상 차이로 인해 예측이 용이하지 않았다. 따라서, 낙 동강 하굿둑 인접 외해역에서 조석 영향을 받는 수위관측치를 이용하여 조석조화분해를 통한 정밀한 조위 예측 산정의 필요성이 대두되 어 본 연구를 수행하였다. 연구의 방법으로는 낙동강하굿둑 인근 외해역에서 10분 간격으로 기간별 관측자료의 저장상태 및 이상자료 유 무를 확인하고, 조석조화분해 프로그램인 TASK2000(Tidal Analysis Software Kit) Package를 이용하여 관측조위와 예측조위를 1대 1 비교하여 회귀상관분석을 수행하였다. 분석 결과, 관측조위와 예측조위간의 상관도는 0.9334로 높게 나타났으며, 당해 연도의 조위예측 분석시 직전 연도의 1년 조석관측 자료를 조화분해하여 산출된 조화상수를 이용하여 조위예측을 실시하면 보다 정확한 결과를 산출할 수 있음을 확인 하였다. 이를 바탕으로 2022년 예측조위를 생성하여 낙동강 하구 기수생태 복원의 해수유입량의 산정에 활용 중이다.