In this study, we examined the effect of orifice diameter on atomization performance such as SMD(Sauter Mean Diameter), MMD(Mass median diameter), particle size distribution, spray distance, and spray angle when water was sprayed through a siphon nozzle. In addition, the behavior characteristics of spray were analyzed using the CFD(Computational Fluid Dynamics) commercial program. In the downstream direction of the flow, the dispersion and diffusion power of the droplets increased, greatly improving atomization performance. The spray spread in the radial direction when the jet velocity of water increased. As a result, atomization performance improved as the jet velocity increased.
In this study, non-destructive technologies that can be applied to evaluate the integrity of valve materials, safety against internal pressure caused by corrosion, and the blocking function of large-diameter water valves during operation without requiring specimen collection or manpower entering the inside of the valve were tested to assess the reliability of the technologies and their suitability for field application. The results showed that the condition of the graphite structure inside the valve body can be evaluated directly through the optical microscope in the field without specimen collection for large-diameter water butterfly valves, and the depth of corrosion inside the valve body can be determined by array ultrasound and the tensile strength can be measured by instrumented indentation test. The reliability of each of these non-destructive techniques is high, and they can be widely used to evaluate the condition of steel or cast iron pipes that are significantly smaller in thickness than valves. Evaluation of blocking function of the valves with mixed gas showed that it can be detected even when a very low flow rate of mixed gas passes through the disk along with the water flow. Finally, as a result of evaluating the field applicability of non-destructive technologies for three old butterfly valves installed in the US industrial water pipeline, it was found that it is possible to check the material and determine the suitability of large-diameter water valves without taking samples, and to determine the corrosion state and mechanical strength. In addition, it was possible to evaluate safety through the measurement results, and it is judged that the evaluation of the blocking function using mixed gas will help strengthen preventive response in the event of an accident.
In this study, the physical properties and fracture characteristics according to the tensile load are evaluated on the materials of the polymeric filler and carbon fiber-based composite sleeve technique. The polymeric filler and the composite sleeve technique are applied to areas where the pipe body thickness is reduced due to corrosion in large-diameter water pipes. First, the tensile strength of the polymeric filler was 161.48~240.43 kgf/cm2, and the tensile strength of the polyurea polymeric filler was relatively higher than that of the epoxy. However, the tensile strength of the polymeric filler is relatively very low compared to ductile cast iron pipes(4,300 kgf/cm2<) or steel pipes(4,100 kgf/cm2). Second, the tensile strength of glass fiber, which is mainly used in composite sleeves, is 3,887.0 kgf/cm2, and that of carbon fiber is up to 5,922.5 kgf/cm2. The tensile strengths of glass and carbon fiber are higher than ductile cast iron pipe or steel pipe. Third, when reinforcing the hemispherical simulated corrosion shape of the ductile cast iron pipe and the steel pipe with a polymeric filler, there was an effect of increasing the ultimate tensile load by 1.04 to 1.06 times, but the ultimate load was 37.7 to 53.7% compared to the ductile cast iron or steel specimen without corrosion damage. It was found that the effect on the reinforcement of the corrosion damaged part was insignificant. Fourth, the composite sleeve using carbon fiber showed an ultimate load of 1.10(0.61T, 1,821.0 kgf) and 1.02(0.60T, 2,290.7 kgf) times higher than the ductile cast iron pipe(1,657.83 kgf) and steel pipe(2,236.8 kgf), respectively. When using a composite sleeve such as fiber, the corrosion damage part of large-diameter water pipes can be reinforced with same level as the original pipe, and the supply stability can be secured through accident prevention.
During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
In this study, as the proportion of aged pipelines increases rapidly, in the event of an accident caused by corrosion and structural deterioration of metal pipes, appropriate overlay welding is applied in the field to partially repair it. The size of the base steel plate and the selection of a stable welding method were evaluated, and possible problems caused by the overlay welding were identified, and improvement measures were proposed. For the test, a new steel pipe coated with epoxy lining on the inner surface and polyethylene on the outer surface was subjected to a tensile test by processing the repaired specimen through overlay welding with a steel plate after artificial cracking, and structural safety was evaluated after repair. Furthermore, the influences of the size of the throat and the size of the steel plate were analyzed. As a result of the tensile test by dividing the repaired steel plate overlay into a constraint and non-constraint conditions, the tensile load was concentrated in the welded part and damage occurred in the welded part. It was found that the maximum load leading to breakage increases as the size of the welding throat increases. In addition, it was found that the resistance to load increased slightly as the size of the overlaid steel plate increased, but the effect was not significant, confirming the need for repair in consideration of the site conditions. As a result of evaluating the damage to the coating material on the back side of the welding, it was confirmed that the coating material on the opposite side of the welding burned black(epoxy) or was greatly deformed by heat(polyethylene). Therefore, it is necessary to secure structural stability through repainting, etc. in order to prevent damage to the coating material on the opposite side during overlay welding.
목적: 20~70대 성인을 대상으로 각막굴절력이 굴절이상과 동공크기에 미치는 영향에 대해서 확인하고자 하였다.
방법 : 안과질환과 각막굴절교정술 경험이 없는 근시안 그룹(831안, 34.55±13.17세, -2.28±1.37 D), 원시 안 그룹(369안, 47.20±12.24세, +1.22±0.72 D)이 본 연구에 참여하였으며, I-Profilerplus를 사용하여 대상안 의 각막굴절력과 동공크기 및 원점굴절도를 측정해 분석하였다.
결과 : 각막굴절력은 근시안 그룹이 원시안 그룹 보다 약 0.35 D 정도 유의하게 컸으며, 근시안과 원시안 및 전체 굴절이상 그룹에서 원점굴절도가 마이너스(-) 방향으로 높을수록 유의하게 증가하였다(p<0.050). 동공크기 는 근시안 그룹이 원시안 그룹에 비하여 약 0.40 mm 정도 유의하게 컸고 근시안과 원시안 및 전체 굴절이상 그 룹 모두에서 원점굴절도가 마이너스(-) 방향으로 높을수록 동공크기가 컸으며(p<0.050), 근시안과 원시안 그룹을 포함하는 전체 굴절이상 그룹에서 각막굴절력이 플러스(+) 방향으로 클수록 동공크기는 유의하게 증가하였다 (p<0.050).
결론 : 각막굴절력은 굴절이상과 동공크기 측정값에 영향을 주는 것을 확인하였으며, 이 연구 결과는 굴절이상 종류에 따른 동공크기 차이를 이해하는데 도움이 되는 기초자료가 될 것으로 생각한다.
Screws are the closest and most familiar mechanical elements of everyday life, and are generally used so widely that there is no machine without screws. Screws are used to make it easier to combine objects with objects, and are also used to transfer large forces from machines. The most influential factor in the coupling of these screws is the effective diameter. If the effective diameter is not accurate, the support cannot be finished or endured, leading to a major accident. The importance of these screws cannot be ignored, so in this study, the effective diameter was measured using the three-wire method, the screw micrometer method, and the projector method, and the one-way factor design method was applied to determine the exact method compared to the KS standard.
The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.
In this study, in order to manufacture STS 316L seamless pipes with 18mm, 25mm, and 42mm diameters that can be used for high pressure, we intend to make predictions through design and finite element analysis and produce real objects. It was measured to have the highest hardness value in the deformed part, and it is expected to be due to work hardening. It has been interpreted that plastic deformation does not occur up to 1,000bar for STS 316L seamless pipes with a diameter of 18mm and 25mm, but plastic deformation occurs at 900bar or more in STS 316L seamless pipes with a diameter of 42mm.
본 연구의 목적은 무인기 정사영상 정보를 활용하여 초미세 고해상도 3차원 공간 모델을 구축하고, 구축된 모델을 이용하여 개체목의 수고와 흉고직경을 추정하는 기술을 분석하고자 하였다. 이를 위해 경상북도 봉화군 일대 잣나무 조림지를 대상으로 무인기 정사영상을 촬영하였으며, SfM 기술을 이용해 촬영영상에 대한 3차원 수고 모델을 추출하였다. 유역분류 알고리즘을 이용해 개체목을 선별·추출하였고, 개체목별 수관면적에 따른 흉고직경을 추정하였다. 본 연구 결과에 의하면, 추출된 수고모델과 현장에서 측정한 수고는 평균 제곱근 편차에서 1.492m (R2 = 0.3401) 차이를 보였으며, 오차율이 가장 적은 수고모델 추출 방법은 지형분석지점 사양이 각도 20°, 이격거리 1m, 격자크기 60m 이었다. 개체목 추출율은 75.4% 이었으며, 수고가 높은 우세목의 추출율은 85.2% 이상이었다. 추출된 개체목의 수관면적과 흉고직경의 상관성은 두 변수 사이에 유의 수준(P<0.01)에서 상관관계가 있었으며, 적합도 77.05% 수준에서 수관면적이 커질수록 흉고직경도 증가하는 추세를 확인할 수 있었다.
The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.
A magnetic abrasive finishing process was proposed for improving the surface accuracy of microscale -diameter STS 304 bar used in many applications such as, medical, aerospace, and nuclear industries. Most of the previous research has already explored the conventional finishing technique to improve the accuracy of material in terms of the surface roughness. However, their results are still not good enough for the requirement in the today’s engineering industry. Especially, when the workpiece is a material of microscale-diameter, use of such conventional processes becomes impossible because they entail the application of high pressures that may damage the surface to be finished. Moreover, less control is available over these conventional finishing processes. In this study, an ultra-high-precision magnetic abrasive finishing process was applied to the precision machining of microscale-diameter STS 304 bar and the experimental work are performed with many critical parameters such as, different workpiece revolution speeds, abrasive grain sizes, different finishing temperatures, and pole vibrations. The results showed that in The initial surface roughness of 0.20 μm (Ra) was decreased to 0.025 μm with 0.5 μm of abrasive grain size and pole vibration 12Hz at 40,000 rpm.
The objective of this study is to optimize the diameter of tubular shaft yoke and solid shaft yoke, which are the core components of Al IMS for xEV. The processes of both products were designed totally 6 steps to manufactured the shaft part and the yoke part. The diameter of solid shaft yoke and tubular shaft yoke were changed from 20mm to 25mm and from 30mm to 35mm, respectively. Al 6082 was applied to the material of both products. The friction condition between die and material was employed Oil_Cold (Aluminum) with reference to the library in the program. The results were analyzed and compared in terms of effective stress, effective strain, and nodal velocity characteristics. The effective strain value for manufacturing the yoke part was higher than the shaft part because its part has a complex geometry. The value of nodal velocity was also higher with high effective strain region. However, in 6 stage process of tubular shaft yoke, although it had the high effective strain value, the nodal velocity value was the lowest due to the piercing process. The effect of shaft part diameter on effective stress in the tubular shaft was difficult to observe, however, in the solid shaft yoke, when the shaft part of one increased, the effective stress value was increased due to the larger yoke size.
In order to commercialize large diameter PP pipes, the cutting work was attempted with the cutting machine (∅18″and AL120 cutter, 2100 r.p.m) used for the conventional PE or PVC pipe(∅1200 mm, t 70), but the cutting work was failed because the material of “PP pipe” melted and sticked to the surface of the wheel-cutter. In order to find the optimal structure and number of blades for wheel-cutters, an experimental investigation the temperature measurement of specimen and wheel-cutter and the visualization of cutted specimen surface and chip shape were carried out during and after experiment. In addition, modelings for cutting and heat transfer mechanisms have been developed for theoretical analysis. The theoretical and experimental results were in good agreement. The results show that the appropriate structure and the rotational speed of wheel-cutter are W60 and 650 rpm for the large diameter PP pipe cutting machine.
The objective of this numerical study is to investigate the effect of shaft part’s diameter on the load distribution, under-fill, and metal-flow line characteristics in tubular & solid shaft yoke of Al-IMS. The outer diameter of tubular shaft yoke was changed from 30mm to 35mm, and the shaft diameter of solid shaft yoke was varied from 20mm to 25mm. In this results, the required load for production was linearly increased with increasing the tubular shaft yoke outer diameter. In the solid shaft yoke, the loads for the shaft part extending process were almost constant by 10,000kg, however, the loads for generating the yoke process, which were needed a lot of strain, were increased by 4,000kg with increasing the diameter of shaft part. The under-fill regions according to diameter of the shaft part were not observed in both products, and the metal-flow lines were also straight without folding phenomena.
In this study, an effervescent atomizer capable of mixing and spraying vegetable oil and kerosene at the same time was proposed to examine the usefulness of vegetable oil and kerosene in terms of recycling of renewable energy and waste resources. The effect of nozzle exit diameter variation on the atomization characteristics such as spray angle, droplet size distribution, cumulative volume distribution, and SMD was investigated using LDPA. The results of this study showed that the spray angles decreased with increasing ALR at the same nozzle exit diameter and increased with increasing nozzle exit diameter under the same ALR condition. SMD was decreased with increasing ALR at all nozzle exit diameters, and SMD was decreased with decreasing nozzle exit diameter even under the same ALR conditions. Also, the droplet was more finely atomized when the nozzle exit diameter is reduced under the same ALR conditions and when the ALR is increased at the same nozzle exit diameter, but the uniformity of the droplets was lowered because the droplet with a larger diameter existed.