고온구조용 재료로 사용이 기대되는 Al3Hf금속간 화합물의 단점인 낮은 연성을 개선하기 위하여 SPEX mill을 이용한 기계적 합금화 과정에서의 Ll2상 생성거동과 이에 미치는 제3원소의 영향, 그리고 이들 금속간 화합물의 진공열간 압축성형 거동을 조사하였다. Al과 Hf 혼합분말을 기계적 합금화한 결과에 따르면 6시간 milling후에 L2Hf 금속간 화합물이 생성되었으며, 이때 결정립 크기가 7~8nm 정도인 nanocrystalline이 형성되었다. Cu를 첨가한 경우에는 10시간 milling 후에 2원계와 동일한 Ll2구조의 금속간 화합물이 생성되었으며, 격자상수는 Cu의 함량이 증가함에 따라 감소하였다. 2원계 Al3Hf 금속간 화합물의 경우에 Ll2상에서 D023 상으로의 변태 시작온도는 380˚C 정도였으며, 변태 종료온도는 열처리시간에 따라 480˚C에서 550˚C 정도를 나타내었다. Cu 함량이 증가함에 따라 변태 시작온도는 상승하였으며 10at.%의 Cu 첨가는 변태 시작온도를 700˚C까지 상승시켰다. 2원계 Al-25at.%Hf 혼합분말의 VHP 성형시 750MPa, 400˚C, 3시간에서 약 89%의 비이론 밀도를 얻을 수 있었다. 같은 온도에서 Cu를 10at.% 첨가한 경우의 VHP 성형시 90%정도의 비이론 밀도를 보여 2원계 A13Hf보다 성형성이 약간 증가하는 것을 볼 수 있었으며, 성형온도를 500˚C로 증가시킨 경우에는 Ll2상에서 D023상으로의 상변화나 결정립의 증가없이 약 92.5%의 비이론 밀도를 얻을 수 있었다.
고온구조용 재료로의 사용이 기대되는 Al3Ti금속간 화합물의 연성 향상을 위한 목적으로 기계적 합금화를 통한 cubic Ll2구조의 생성거동과 Mn의 첨가 영향을 조사하였다. Al-8Mn-25Ti조성에서 20시간의 기계적 합금화를 통해 약 1.0nm 사이즈의 grain을 갖는 nanocrystalline cubic Ll2Al3Ti 금속간 화합물이 제조되었다. Mn이 첨가된 3원계 cubic Ll2Al3Ti 금속간 화합물은 2원계 cubic Ll2Al3Ti 금속간 화합물에서 보이는 Ll2구조에서 D023구조나 D022구조로의 상변태가 발생하지 않았으며 Mn의 첨가로 인해 Ll2구조는 1200˚C가지 안정함을 보였다.
고온구조용 재료로의 사용이 기대되는 Al3Hf 및 Al3Ta 금속간화합물의 연성을 향상시키기 위하여 SPEX mill을 이용한 기계적합금화시 Ll2 상의 생성거동과 이에 미치는 제 3 원소의 영향을 조사하였다. Al-25%Hf 혼합분말의 경우에는 기계적합금화 6시간부터 Ll2Al3Hf 금속간화합물의 생성되었으나, Al-25%Ta의 경우에는 30시간까지도 D022 Al3Ta 금속간화합물만 생성되었고, Ll2상은 생성되지 않았다. Al-12.5%M-25%MTa(M = Cu, Zn, Mn, Fe, Ni) 조성으로 제 3 원소를 첨가하여 20시간 동안 기계적합금화한 결과 Cu과 Zn의 경우에는 D022 구조 금속간화합물만 생성되었고, Mn, Fe, Ni을 첨가한 경우에는 600˚C에서 등온열처리 후 D0(sub)22상으로 상변태되는 비정질상이 생성된 것으로 보아 이러한 제 3 원소의 첨가는 Cu와 Zn를 첨가한 경우에는 2원계와 마찬가지로 Ll2상과 D022 상간의 에너지 차이를 극복하기 못한 것으로 생각된다 한편, Al-12.5%M-25%Hf조성으로 Cu과 Zn를 첨가한 경우게는 2원계와 마찬가지로 Ll2구조의 금속간화합물이 생성되었으나, Mn, Fe, Ni을 첨가한 경우에는 Al-12.5%M-25%MTa(M = Cu, Zn, Mn, Fe, Ni) 계와 같이 비정질이 생성된 것으로 보아 Ni, Nn, Fe는 AL3X 금속간화합물을 비정질화시키는 경향이 강한 것으로 생각된다.로 생각된다.
유도 용해후 열기계적 처리를 거친 3종류의 Al3Ti-Cr합금, 즉 Al67Ti25Cr8, Al66Ti24Cr10 및 Al59Ti26Cr15에 대해 2.5% NaCl 용액 내에 부삭시험과 1000, 1100 및 1200˚C에서의 고온 산화시험을 실시하였다. 전기화학적 평가결과에서 Cr조성이 증가함에 따라 국부부식에 대한 내식성이 증가하였으며, 부동태 피막의 취성파괴를 방지하였다. XPS결과는 Al3Ti-Cr합금의 부동태 피막은 주로 Al2O3로 구성되어 있으며, TiO2 및 Cr2O3도 공존하고 있음을 알 수 있었다. 고온 내산화성은 모든 시편이 전체적으로 뛰어난 내산화성을 지니고 있었는데, 구체적으로는 Al59Ti26Cr15, Al66Ti24Cr10 및 Al67Ti25Cr8의 순으로 증가하였다. 이는 합금내의 Al 함량이 증가할수록 Al2O3보호피막의 형성이 용이하였기 때문이었다.
Ll2기지에 20 vol.% Cr2Al이 석출된 Al-21Ti-23Cr 2상합금은 1150˚C에서는 2상영역에 위치하지만 1000˚C에서는 3상영역에 위치한다. 이러한 점에 착안하여 본 연구에서는 Al-21Ti-23Cr 2상합금의 시효처리시 800˚C 및 1000˚C이하에서 시효처리하여 Ll2기지에 제3상을 미세하게 석출시켜, 기계적성질을 개선하고자 하였다. Al-21Ti-23Cr 2상합금의 시효처리시 800˚C 및 1000˚C에서는 Ll2기지부분에 수 μm 크기의 제3상이 다량 석출되지만 600˚C이하에서는 제3상이 석출이 관찰되지 않았으며, 제3상의 석출형태는 1000˚C보다 800˚C에서 시효처리할 경우 더욱 미세하게 분포하는 것으로 확인되었다. 시효온도 상승에 따른 Al-21Ti-23Cr 2상합금의 항복강도는 800˚C에서 급격히 증가 후 다시 급격히 감소하는경향을 나타냈으며, 이러한 항복강도의 급격한 증가는 Ll2기지 부분에 수 μm 크기의 미세한 제3상이 다량 석출되기 때문에 나타나는 현상으로 판단된다. Al-21Ti-23Cr 2상합금의 시효처리시 Ll2기지에 석출되는 제3상은 TiAlCr으로 확인되엇으며, 이러한 TiAlCr 석출상의 이용은 Ll2기지의 균열전파에 대한 저항성를 향상시켜 합금의 기계적성질의 개선에 매우 효과적일 것으로 판단된다.
Fe-Al계 금속간화합물이 FACS (Field-Activated Combustion Synthesis) 법에 의해 제조되었다. 이 계의 반응에 있어서 조성 (Fe:Al=3 : 1,2 : 1, 1 : 1.1 : 2, 1 : 3) , 성형압력 (150, 250, 350MPa), 저항 등이 조사되었는데. Al의 몰비, 성형압력, 전기장의 세가가 증가함에 따라서 연소온도와 연소속도는 증가하였다. 또한 이 계에 있어서 전류적용방식에 따른 반응에 대한 영향이 조사되었다. 전기장이 적용되지 않는 경우, 반응이 일어나기 위해서는 예열이 필요하였고, 예열을 하였을 경우라도 그 반응은 불안정연소파를 나타내어 완전한 반응이 이루어지지 않았다. 생성물은 X-ray, SEM, EDXS를 사용하여 그 구조와 조성을 관찰하였다
Al-Cr-Zr nanocomposite metal powders were prepared by mechnical alloying (MA) in order to develop aircraft structure materials with lighter weight and lower cost than the conventional Ti and Ni alloys. The morphological changes and microstrutural evolution of Al-6wt.%Cr-3wt.%Zr nanocomposite metal powders during MA were investigated by SEM, XRD and TEM. The approximately 50m sized Al-Cr-Zr nanocomposite metal powders has been formed after 20 h of MA. The individual X-ray diffraction peaks of Al, Cr and Zr were broadened and peak intensitied were decreased as a function of MA time. The observed Al crystallite size by TEM was in the range of 20 nm, which is a simliar value calculated by Scherrer equation. The microhardness of Al-Cr-Zr nanocomposite metal powders increases alomost linearly with increase of the processing time, reaching a saturation hardness value of 127 kg/ after 20 h of processing. The intermetallic compound phase of in the matrix was identifed by XRD and TEM.
Three mixtures of elemental powders of Al-25at.%Ti, 48at.%Ti and 70at.%Ti were offered to ball milling process for the formation of intermetallic compounds of , AlTi and . Ballmilling or attrition process were carried out at the condition of rotaing speed of 110 or 350 rpm at torr vacuum or argon atmospheres. phases were fully obtained by heat treatment for 1 hors at with Al-25at.%Ti composition mixtures milled by 100 hours. The amorphous phase was completely formed at the composition of Al-48at.%Ti mixed powders by milling 100hours at the 50 to 1 weight ratio of ball to powder, and AlTi compounds were obtained by heat treament. In the case of Al-70at%Ti mixed powders milled for 100 hours, and intermetallic compounds were formed by heat treatment for 1 hour at . By attrition milling of 350rpm for 10 hours, phase was formed completley after heat treatment for 1 hour at .
Ti-45at%AI-1.6at%Mn 조성을 갖는 금속간화합물의 장시간 및 반복산화 거동을조사하기 위하여 반응소결법 및 플라즈마 아크 용해법으로 제조한 시편에 대하여 800˚C에서는 반응소결재와 용제재 모두 등온 및 반복산화에 대하여 우수한 저항성을 나타내었다. 900˚C에서는 반응소결재의 경우에는 등온 및 반복산화에 대하여 우수한 저항성을 보였으며, 중량변화와 산화피막의 박리는 극히 적었다. 이에 비해 용제재의 경우에는 등온 및 반복산화에 의해 중향이 크게 변하였으며 피막의 박리도 극심하였다. 900˚C에 있어서 두 재료간의 이러한 산화거동 차이는 기지/산화물 계면 부근에 형성된 산화층의 차이에 기인하는 것으로 간주하였다. 반응소결재의 경우에는 계면 부근에 연속적인 AO3O3층이 형성되며, 이러한 층이 산화에 대한 보호막으로 작용하는데 비하여 용제재에 있어서는 계면 부근에 AO3O3와 TiO2의 혼합층이 형성되었다. 용제재의 반복산화시에 보여진 피막의 박리는 냉각시에 TiO2와 기지간의 열팽창계수 차이에 기인하여 발생하는 열응력을 TiO2가 견디지 못하고 박리를 초래한 것으로 해석하였다.
intermetallics containing 0-6 wt% of Cu were made by reactive sintering (RS) under vacuum using elemental powder mixtures (Process 1), electro-pressure sintering (EPS) using RS'ed materials (Process2), and EPS using elemental powder mixtures (Process 3). Relatively low dense titanium silicides were gained by process 1, in which porosity decreased with increasing Cu content. For example, porosity changed from 42 to 19.4% with the increase in Cu content from 0 to 6 wt%, indicating that Cu is a useful sintering aid. The titanium silicides fabricated by Process 2 had a higher density than those by Process 1 at given composition, and porosity decreased with increasing Cu content. For example, porosity decreased from 38 to 6.8% with the change in Cu content from 0 to 6 wt%. A high dense titanium silicides were obtained by Process 3. In this Process, porosity decreased a little by Cu addition, and was almost insensitive to Cu content. Namely, about 9 or 7% of porosity was shown in 0 or 1-6 wt% Cu containing silicides, respectively. The hardeness increased by Cu addition, and was not changed markedly with Cu content for the silicides fabricated by Process 3. This tendency was considered to be resulted from porosity, hardening of grain interior by Cu addition, and softening of grain boundary by Cu-base segregates. All these results suggested that EPS using elemental powder mixtures (Process 3) is an effective processing method to achieve satisfactorily dense titanium silicides.
LI2형 결정구조를 갖는 Ni-20at.%AI-10at%Fe 금속간화합물에 boron, zirconium 과 hafnium을 최고 0.5at.% 까지 첨가하여 항복강도, 연성, 파괴 등 기계적 성질의 변화를 인장시험과 X선분석 및 XPS분석 등을 통하여 관찰하였다. Ni-20at.% AI-10at.% Fe금속간화합물에 boron을 첨가하였을 때는 연신율의 현저한 증가가 나타났으나 zirconium이나 hafnium첨가의 경우에는 별다른 효과가 나타나지 않았다. Ni-20at.%AI-10at%Fe 금속간화합물의 경우, boron의 양이 증가할수록 인장연신율이 증가하였으며 0.1at.%의 boron을 첨가한 경우 최고 48.5%의 상온인장연신율을 나타내었다. 첨가물을 넣지 않은 경우와 zirconium과 hafnium을 첨가한 경우, 파괴모드는 입계파괴의 형태를 나타내었으나 boron을 첨가한 경우에는 파괴모드가 입계파괴에서 입내파괴로 변화되었다. XPS분석을 통하여 boron이 입계에 편석된 것을 관찰할 수 있었으며 이는 이미 제시된 여러가지 해석들과 일치하는 결과이다. 이로부터 boron의 첨가에 따른 인장연신율의 증가는 boron의 입계편석거동과 관련이 있음을 알 수 있다.
제 3원소가 첨가된 금속간 화합물 TiAI 금속간 화합물 분말을 PREP법(플라즈마 회전전극법)으로 제조하여, 통.방전 강압소결법에 의해 치밀한 소결체를 만들었다. 이에 대해 첨가 원소의 종류와 열처리에 따른 고온 및 상온 압축 특성의 변화를 조사하였다. 소결체의 미세조직은 γ/α2 lamella로 이루어진 완전 변태구조였고, 결정립의 크기는 140-150μm였으며 계단형 결정립계를 나타내었다. 소결체를 (α+γ)구역인 1300˚C에서 2시간 동안 열처리한 결과, 모든 조성의 시편이 등축점 γ와 lamella로 이루어진 전형적인 duplexrn조로 변태하였다. 상온 압축 시험에서 시편은 파괴될 때까지 가공경화 현상이 나타났으며, Cr을 첨가한 시편이 가장 큰 파괴응력과 변형률을 나타내었다. 한편, 고온 압축 시험의 경우 온도상승 때문에 가공경화의 속도가 감소되었고, 800˚C에서는 가공경화와 회복이 균형을 이루는 소위 정상 상태의 변형을 보였다.