검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

분야

    발행연도

    -

      검색결과 126

      1.
      2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 °C, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.
      4,000원
      4.
      2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.
      4,000원
      5.
      2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 °C. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.
      4,000원
      6.
      2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
      The automotive industry continuously strives to enhance safety for both drivers and passengers through technological advancements. Car side impacts have the potential to significant risks to passengers, So the automotive industry has proposed various technological solutions. As part of these efforts, the development of side impact beams, which are affixed to the inner frame of vehicle side doors to absorb and dissipate collision energy, has been a safety enhancement. Conventional side impact beams are manufactured using hot-rolled steel sheets and have a pipe-like configuration. However, these impact beams are fixed to the vehicle's chassis, which directly transfers the energy generated during a collision to the chassis frame. This paper aims to address this issue by proposing the development and optimization of vehicle door impact beams using a dual-beam structure and fastening method, utilizing shear bolts. Moreover, the focus is on optimizing the cross-sectional shape of the dual-beam impact structure. The evaluation criterion for optimization is based on the second moment of area of the cross-section. To validate these improvements, Static experiments were conducted, comparing the proposed dual-beam structure with the traditional impact beam. This research is expected to serve as a guideline for enhancing vehicle safety through design directions and validation methods.
      4,000원
      7.
      2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Polyethersulfone (PES)은 친수성과 상분리법의 용이성 덕분에 수처리 및 정제 분야에서 정밀여과 및 한외여과막 소재로 일반적으로 사용된다. 그러나, 비용매 유도 상분리법으로 제조된 PES 분리막, 특히 지지체가 없는 여과막의 경우 도 프의 조성과 기재의 특성에 따라 여과막 하부에 낮은 기공도를 갖는 치밀층이 형성되기 쉽고, 이러한 치밀층으로 인해 수투 과 저항이 증가하고 오염물질의 쌓임에 의한 막오염이 일어난다. 본 연구에서는 PES 여과막 제조 시 상전이 과정의 수축으 로 인해 분리막 하부에 물이 침투하여 치밀층을 형성, 심각한 막오염을 유발할 수 있음을 확인하였다. 동일한 선택층을 갖는 PES 여과막을 단일층 및 이중층 캐스팅법으로 각각 제조하여 하부 치밀층이 여과막의 투과성능 및 막오염에 미치는 영향을 파악하고자 하였다. 하부 치밀층이 없는 이중층 캐스팅된 여과막은 기존 여과막 대비 높은 투과성능 및 막오염에 대한 저항 성을 보였으며, 이를 통해 다공성 여과막의 내오염성을 향상시키기 위한 표면 기공도 및 기공 구조 등 물리적 구조의 최적화 가 중요함을 확인하였다.
      4,000원
      9.
      2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower к (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100oC. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.
      4,000원
      11.
      2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Carbon nanotube fiber is a promising material in electrical and electronic applications, such as, wires, cables, batteries, and supercapacitors. But the problem of joining carbon nanotube fiber is a main obstacle for its practical development. Since the traditional joining methods are unsuitable because of low efficiency or damage to the fiber structure, new methods are urgently required. In this study, the joining between carbon nanotube fiber was realized by deposited nickel–copper doublelayer metal via a meniscus-confined localized electrochemical deposition process. The microstructures of the double-layer metal joints under different deposition voltages were observed and studied. It turned out that a complete and defect-free joint could be fabricated under a suitable voltage of 5.25 V. The images of the joint cross section and interface between deposited metal and fiber indicated that the fiber structure remained unaffected by the deposited metal, and the introduction of nickel improved interface bonding of double-layer metal joint with fiber than copper joint. The electrical and mechanical properties of the joined fibers under different deposition voltages were studied. The results show that the introduction of nickel significantly improved the electrical and mechanical properties of the joined fiber. Under a suitable deposition voltage, the resistance of the joined fiber was 37.7% of the original fiber, and the bearing capacity of the joined fiber was no less than the original fiber. Under optimized condition, the fracture mode of the joined fibers was plastic fiber fracture.
      4,500원
      12.
      2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.
      4,000원
      14.
      2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.
      4,000원
      15.
      2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
      The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 μm, 85°: 196.4 ± 9.6 μm, and 80°: 208.8 ± 10.2 μm, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 μm, 85°: 8.5 ± 1.1 μm, and 80°: 8.5 ± 0.4 μm. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.
      4,000원
      16.
      2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
      The SnSe single crystal shows an outstanding figure of merit (ZT) of 2.6 at 973 K; thus, it is considered to be a promising thermoelectric material. However, the mass production of SnSe single crystals is difficult, and their mechanical properties are poor. Alternatively, we can use polycrystalline SnSe powder, which has better mechanical properties. In this study, surface modification by atomic layer deposition (ALD) is chosen to increase the ZT value of SnSe polycrystalline powder. SnSe powder is ground by a ball mill. An ALD coating process using a rotary-type reactor is adopted. ZnO thin films are grown by 100 ALD cycles using diethylzinc and H2O as precursors at 100oC. ALD is performed at rotation speeds of 30, 40, 50, and 60 rpm to examine the effects of rotation speed on the thin film characteristics. The physical and chemical properties of ALD-coated SnSe powders are characterized by scanning and tunneling electron microscopy combined with energy-dispersive spectroscopy. The results reveal that a smooth oxygenrich ZnO layer is grown on SnSe at a rotation speed of 30 rpm. This result can be applied for the uniform coating of a ZnO layer on various powder materials.
      4,000원
      17.
      2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
      본 논문에서는 ~1.5 μm의 기공 크기를 가지는 고투과도 알파 알루미나 지지체 위에 도포된 서스펜션의 증발유도 자기조립 현상을 이용하여 중간층을 형성하는 새로운 코팅 방식을 소개한다. 새로운 코팅 방법으로 만들어진 중간층은 일반 적으로 사용되는 담지법으로 코팅된 중간층과 비교하여 표면거칠기와 불균일도가 낮아 코팅에 적합하였다. 복합막 지지체로 서의 평가를 위해 제조된 지지체는 감마 알루미나 복합막 제조에 사용되었다. 메조 기공을 가지는 감마 알루미나 복합막은 반복코팅 없이도 매크로 기공 크기의 결함이 존재하지 않았으며 일반적으로 널리 사용되는 100~200 nm의 기공 크기를 가지 는 지지체로부터 만들어진 같은 두께의 복합막과 비교하여 2.3배 이상의 높은 질소투과도를 보였다.
      4,000원
      18.
      2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
      Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 μs after post-deposition annealing (PDA) at 100 oC. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 oC the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 oC, and 5:5 for annealing at 300 oC. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.
      4,000원
      1 2 3 4 5