검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 818

        61.
        2017.12 구독 인증기관 무료, 개인회원 유료
        Transient receptor potential melastatin 8 (TRPM8) plays a crucial role in innocuous cool sensation, acute cold pain and cold-induced hyperalgesia during pathologic conditions. To help understand TRPM8-mediated cold perception in the dental pulp and periodontal tissues, we examined the distribution of TRPM8-immunopositive (+) axons in molar and incisor pulp and periodontal tissues using transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. In the radicular pulp of the molar teeth, a small number of TRPM8+ axons were observed. TRPM8+ axons branched frequently and extensively in the core of coronal pulp, forming a network in the peripheral pulp. Some TRPM8+ axons ascended between odontoblasts and were observed in the dentinal tubule. TRPM8+ axons were linear-shaped in the radicular pulp, whereas many TRPM8+ axons showed portions shaped like beads connected with thin axonal stands at the peripheral pulp. TRPM8 was densely expressed in the bead portions. In the incisor pulp, TRPM8+ axons were occasionally observed in the core of the coronal pulp and rarely observed at the peripheral pulp. TRPM8+ axons were occasionally observed and showed a linear shape rather than a bead-like appearance in the periodontal ligament and lamina propria of the gingival tissue. These findings, showing differential distribution of TRPM8+ axons between radicular and coronal portions of the molar pulp, between incisor and molar pulp, and between dental pulp and periodontal tissues, may reflect differential cold sensitivity in these regions.
        4,000원
        62.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Colorectal cancer (CRC) is the third most prevalent cancer in the world, and heme iron is known to promote the CRC in an animal model. This study was conducted to investigate the effects of ascorbic acid in the presence of hemin on the formation of pre-neoplastic lesions induced by azoxymethane (AOM)/disodium sulfate (DSS) in mice. After acclimation for 1 week, five-week old mice received three s.c. injections (0-2 weeks of the experiment) of AOM [10 mg/kg body weight (BW)] weekly and were treated with 2% DSS in drinking water for the next week to induce aberrant crypt foci (ACF). All animals were fed the AIN-76A purified rodent diet for experimental period of 6 weeks. Experimental groups were then divided into three groups: carboxymethylcellulose (CMC) alone (control), CMC + Hemin, CMC + Hemin + ascorbic acid (AA). The CMC was used as a solvent for hemin. The daily doses were 534 mg/kg BW hemin and 246 mg/kg BW ascorbic acid administered orally. After the colonic mucosa were stained with methylene blue, aberrant crypt foci (ACF), aberrant crypt (AC) and polyps were counted. Lipid peroxidation in liver was evaluated by the thiobarbituric acid-reactive substances (TBARS) assay. The numbers of ACF, AC and large ACF (≥4 AC/ACF) per colon increased in the hemin group compared to the control group, while they decreased significantly in the hemin + ascorbic acid group compared to the control group or hemin group (p<0.01). The number of polyps/colon in the hemin + AA group was significantly decreased compared to the hemin group (p<0.05). In the liver, the TBARS value of the hemin group was significantly higher than that of the control group (p<0.01). Additionally, the TBARS value of the hemin + AA group decreased slightly compared to that of the hemin group. Taken together, these results suggest that hemin can promote colon carcinogenesis in a mouse model and that ascorbic acid has a protective effect against hemin-promoted colon carcinogenesis.
        4,000원
        65.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To compare functional Chinese cabbage(‘Amtak’ baechu; F1 hybrid cultivar between Brassica rapa and B. perkinensis, AB) with general Chinese cabbage (‘Chunkwang’ baechu; general spring cultivar, CB), two kinds of kimchi(ABK and CBK) prepared with AB and CB cultivar were fermented at 10°C for 10 days. Their fermentative characteristics and anti-proliferative activities against mouse carcinoma cell lines were investigated. General kimchi(CBK) showed mature pH on the 6th day of fermentation, whereas functional kimchi(ABK) reached pH on the 9th day. CBK also exhibited acidity of mature stage on the 6th day, but ABK reached mature acidity on the 9th day. Although ABK and CBK were salted in the same condition, ABK had lower salinity than CBK, throughout the fermentation time. The highest total bacterial and lactic bacterial counts of CBK showed on the 8th day of fermentation, but ABK showed the highest total bacterial and lactic bacterial counts on the 10th day. The texture of ABK was harder than CBK for fermentation time. This seems to be corrleated with the slower fermentation rate of ABK. ABK showed significantly higher anti-proliferative activity (54.6% cell viability of control) in B16BL6 at 1,000 μg/mL. ABK was also higher in anti-proliferative activity than CBK throughout the fermentation time. However, there was no significant difference in the anti-proliferative activity of ABK between the fermentation times. In conclusion, fermentation of ABK showed a better texture, due to the slow fermentation rate and more anti-proliferative activity against mouse carcinoma cell line than those of CBK.
        4,000원
        66.
        2017.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        As diethylnitrosamine (DEN) effect on cell proliferation, DNA damage and stem cell marker(s) expression have been largely unknown in mouse normal hepatocytes (AML-12 cells) cultured over a short-term period, this study was conducted to examine the cell proliferation, Ataxia telangiectasia mutated (ATM) and epithelial cell adhesion molecule (EpCAM) and Neighbor of Punc E 11 (Nope) expression in AML-12 cells treated with DEN for 24 and 48 h. Cells were treated with DEN (25-800 μg/mL) and cell phenotype was determined, and the MTT assay was used to quantify the proliferation of cells treated with DEN. Expression and distribution of ATM in AML-12 cells were determined by indirect immunofluorescence microscopy. And Western blot analysis of EpCAM and Nope was performed. Cell viability was significantly increased in response to all doses of DEN treatment compared to control at 24 h (p<0.05 or p<0.01). However, there was no significant increase at 48 h, even though it showed increased trend. Immunofluorescence staining of ATM showed that there was an increase of ATM expression at doses of 50, 100 and 200 μg/mL of DEN treatment, showing strong nuclear staining. Furthermore, Western blot analysis showed that DEN treatment showed increased trend of EpCAM and Nope expression. Taken together, DEN treatment increased cell proliferation in AML- 12 cells, and it was associated with increased ATM expression.
        3,000원
        67.
        2017.05 구독 인증기관·개인회원 무료
        Generally, fate of spematogonial stem cells (SSCs) can be determined specifically by microenvironments enclosed with various extracellular matrix (ECM) components and integrins recognizing directly ECM proteins play an pivotal role in transporting ECM-derived signals into cytoplasm, resulting in inducing a variety of biological functions such as cell attachment, self-renewal and differentiation. However, to date, studies on type of integrins expressed on the undifferentiated SSCs remain unclear. Therefore, we tried to investigate systematically what kind of integrin subunits are expressed transcriptionally or translationally in the SSCs derived from testis of hybrid B6CBAF1 mouse. For these, isolation of SSCs from testis were conducted by magnetic activated cell sorting (MACS) using Thy1 antibody. Subsequently, transcriptional and translational level of integrin α and β subunits in the isolated SSCs were measured by real-time PCR and fluorescene immunoassay, respectively. As the results, transcriptional levels of genes encoding total 25 integrin subunits were quantified, and integrin α4, α6, α7, α9, αV, αL and αE and integrin β1, β5 showed higher expression levels than other subunits. By contrast, integrin α3, α5, α 10 and α11 and integrin β2, β3, β4, β7 were weakly transcribed. When translational levels of the integrin α subunits showing high transcription level (α4, α6, α7, α9, αV αL, and αE) were measured, integrin α6, α7, α9, αV and αL were higher than integrin α4 and αE. In case of integrin β subunit, β1 evaluated more expression than β5. From these results, we speculate that the undifferentiated SSCs derived from hybrid B6CBAF1 mouse may express integrin α4β1, α6β1, α7β1, α9β1, αVβ1 and/or αVβ5 on plasma membrane. Moreover, this information will greatly contribute to constructing non-cellular niche supporting self-renewal of SSCs in the future.
        68.
        2017.05 구독 인증기관·개인회원 무료
        Post-ejaculation of sperms into the female reproductive tract, acquisition of sperm capacitation is an essential step in the fertilization process. Accordingly, during in-vitro fertilization, the successful fertilization requires necessarily induction of capacitation in the retrieved sperms. To date, many candidate substances have been considered as capacitation inducers. However, there were no reports about the comparison of efficiency inducing sperm capacitation among diverse capacitation inducers. Therefore, we tried to determine an inducer showing the best capacitation performance in mouse sperms by comparing the preimplantation development of in-vitro-fertilized embryos using sperms experiencing capacitation by a variety of capacitation inducers. For these, calcium, progesterone, bovine serum albumin (BSA), heparin, lysophosphaticylcholine (Lyso-PC) were used as candidate capacitation inducers. Optimized concentration of each inducer were determined by accessing ratio of sperms experiencing acrosome reaction using coomassie G-250 blue staining. Subsequently, in vitro fertilization was performed using sperms incubated in each optimized concentration inducer. The ratio of fertilized oocytes was observed. As the results, Calcium at 2.7 mM and 0.3% (w/v) BSA showed the highest fertilization rates compared to 15 μM progesterone, 50 mM heparin, and 100 μM Lyso-PC. From these results, we found that 2.7 mM calcium and 0.3% (w/v) BSA were the most effective sperm capacitation inducers of mouse sperm for in vitro fertilization. From these results, we could identify that, among diverse sperm capacitation inducers, 2.7mM calcium and 0.3% (w/v) BSA were the most effective inducers for in vitro fertilization.
        71.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Muscle atrophy is characterized by a decrease in the mass of the muscle. With an increase in life expectancy and chronic illnesses, the incidence of muscle atrophy is increasing and the quality of life of patients is decreasing. Thus, reducing muscle atrophy is of high clinical and socio-economic importance. Mistletoe is a semi-parasitic plant that has been used as a traditional medicine in many countries to treat various human illnesses. It has been reported that Korean mistletoe extract (KME) has diverse biological functions including anti-tumor, anti-oxidant, anti-diabetic, anti-obesity properties, and extension of lifespan. Especially, we have recently reported that KME improves exercise endurance in mice, indicating its beneficial roles in enhancing the capacity of skeletal muscle. In this study, we investigated whether KME could activate the signaling pathway related to protein synthesis in a mouse model of muscle atrophy. Interestingly, KME efficiently activated the Akt/mTOR pathway, and Akt and mTOR are important signaling hub molecules for the acceleration of protein synthesis in muscle cells. In addition, KME also increased the activity of S6 kinase which is involved in the regulation of muscle cell size. Moreover, the ERK activity, required for transcription of ribosomal RNA for protein synthesis, was also enhanced in KME-treated mouse muscle. These data support the idea that KME increases muscle mass via increased protein synthesis. Our findings also suggest that Korean mistletoe might be a promising candidate for the development of functional foods that are beneficial for preventing muscle atrophy.
        4,000원
        74.
        2016.10 구독 인증기관·개인회원 무료
        Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland. However, purification of therapeutic proteins from transgenic milk are very important for productivity of recombinant protein. Development of a knock-in vector system is needed to improve production of therapeutic proteins. In this study, we are develop Knock-in vector to express human Erythropoietin protein (hEPO) using Gluthathione S-transferase (GST) fusion system on mouse β-casein exon 3 locus. The knock-in vector consisted of the 5 homologous arm (1.02 kb), GST, PreScission protease site, hEPO cDNA, BGH polyA signal, CMV-EGFP, and 3homologous arm(1.81 kb). The analysis of nucleotide and amino acid sequence revealed that GST-hEPO mRNA is probably translated with the mouse β-casein sequence and the β-casein-GST-hEPO fusion protein is probably secreted by ER-Golgi pathway. After that, the hEPO protein can be cleaved to remove the GST from the fusion protein by PreScission protease during purification of recombinant protein. This knock-in vector may help to create transgenic mouse expressing human Erythropoietin protein via the endogenous expression system of the mouse β-casein gene in the mammary gland.
        75.
        2016.10 구독 인증기관·개인회원 무료
        PP2A-B55α, a regulatory subunit of PP2A plays an important roles in regulating cell proliferation and survival. However, the functions for PP2A-B55α in mouse early embryo development is not clear. The objective of present were to investigate the expression patterns and to explore its biological function during mouse early development. Thetranscripts of PP2A-B55α were detected at all developmental stages in mouse embryo and decreased during embryo development. Immunostaining revealed that PP2A-B55α was present in both the nucleus and cytoplasm in early cleavage stage embryos. In the late embryonic development, PP2A-B55α was predominantly located in the cytoplasm. Knockdown (KD) of PP2A-B55α using double strand RNA not affect the proportion of cleaved embryos, but resulted in significantly decreased development to blastocyst stage and reduced total cell number in blastocyst. KD PP2A-B55α is able to induce sustained DNA damage and reduced the transcripts of non-homologous end joining (NHEJ) or homologous recombination (HR) pathways relative genes in mouse early embryo. KD PP2A-B55αcaused apoptosis and increase the transcripts of pro-apoptotic genes in blastocyst. Furthermore, The KDPP2A-B55α showed significantly lower cell proliferating rates (from 5-Bromo-deoxyuridineassayresults) in blastocysts and to talareas of out growth potential was decreased. These observation provide novel in sight into PP2A-B55α expression patterns in mouse early embryos and down-regulation of PP2A-B55α negatively impacted blastocyst development, total cell number, DNA damage, apoptosis, and proliferation and post-hatchingevents.
        76.
        2016.10 구독 인증기관·개인회원 무료
        Mitotic spindle formation is regulated by centrosomes, composed of a centriole pair surrounded by pericentriolar materials(PCM) proteins. However, mammalian oocytes rely on acentriolar MTOCs for the function of meiotic spindle. The composition of acentriolar MTOCs and the molecular precesses that regulate the localization and accumulation in mammalian oocyte are not well understood. In this study, we analyzed the mechanisms of spindle microtubule nucleation and stability from MTOCs in mouse oocyte, and indentified Centrosomal protein192(CEP192) as a key regulator for acentriolar MTOC formation. CEP192 specifically colocalized with pericentrin (PCNT) during the oocyte maturaion. CEP192 proteins are localized throughout cytoplasm and around nucleus at GV stage, and then after BD stage, CEP192 proteins were further fragmented into smaller MTOCs around chromosomes. At metaphase, CEP192 proteins were concentrated in spindle pole. Knockdown of CEP192 using siRNAs resulted in metaphase I arrest. The arrested oocytes were characterized by reduced microtubule intensity and misalignment chromosome. Also at BD and ProMI stage, the oocytes reduced microtubule density and PCNT intensity. To confirm the mechanism of CEP192 regulation, we confirmed that PLK1 and AuroraA kinase were involved in CEP192 activation. The investigations for detailed molecular mechanisms of CEP192 and RanGTP for microtubule nucleation in oocytes are underway using various techniques including siRNA, mRNA, and positive or negative dominant injection and inhibitors.
        77.
        2016.10 구독 인증기관·개인회원 무료
        Spermatogonial stem cells (SCCs) is foundation for spermatogenesis throughout male adult life because they have ability of self-renewal and differentiation into spermatozoa. Storage of such SSCs is very important to study on male reproduction, which would contribute human male infertility to be treated. However, during cryopreservation, the most cells are damaged by cryoinjury such as apoptosis, necrosis, osmotic stress, oxidative stress and so on. For the reason, in cryopreservation technique, targeting purpose is what cells are stored stably without cryoinjury. The purpose of this study was to develop the cryoprotectant for decrease in cryoinjury of SSCs by using melatonin and necrostatin-1 as additive cryoprotectant. The SSCs with melatonin or necrostatin-1 was frozen for 1 month, and then thawed to evaluate survival, recovery and proliferation rate. The result showed that necrostatin-1 50 mM was significantly greater than DMSO control. Furthermore, we conducted the characterization of cryo-thawed SSCs with necrostatin-1 50 mM to confirm whether the SSCs could maintain the undifferentiated state. As a result, the normal expression of each marker, which is PLZF, GFRa1 and VASA, was observed except for C-kit, meaning that the cells could maintain the undifferentiated state regardless of cryopreservation. Therefore, the result indicates that the cryo-thawed SSCs have ability of proliferation and self-renewal. In conclusion, our finding verifies that cryopreservation of SSC with necrostatin-1 50 mM could be helpful to preserve the SSCs stably, contributing to various studies on male reproduction and infertility treatment
        78.
        2016.10 구독 인증기관·개인회원 무료
        The Y chromosome is a type of sex chromosome existing primarily in male mammalian species. The Y chromosome passes through the male gamete and determines male sex in humans, non-human primates, and other mammals. The mammalian Y chromosome varies from the X chromosome and the rest of the chromosomes primarily by size and its male sex-determining/spermatogenesis function. In the Y chromosome, male sex-determining function is exclusively located on the short arm, while the spermatogenesis function is distributed widely on the short and long arm. Deletions or mutations particularly in the male-specific region of Y chromosome (MSY) may cause male infertility. During the last few decades, researchers put forth an enormous effort to discover Y chromosome specific genes, and their encoded RNAs and proteins in humans, primates, and rodents. As a result, most of the genes and encoded proteins responsible for male-sex determination, testis development, and spermatogenesis have been discovered in humans, however not well established in non-human primates and rodents. Also, there might be a percent of proteins missing in human Y chromosome. The aim of this study is to annotate the proteins that encoded on the Y chromosome of humans, chimpanzee, and mouse using extensive bioinformatics tools. The human (annotation release 107), chimpanzee (annotation release 103), and mouse (annotation release 105) proteins were first retrieved from the National Center for Biotechnology Information (NCBI) eukaryotic genome annotation resource database. Then, the annotated human proteins (66 proteins) were compared with the core databases of human proteome project such as neXtProt, PeptideAtlas, and the Human Protein Atlas. The X-homologous of human Y chromosome-encoded proteins were searched using the NCBI Protein BLAST program. The cellular pathways and protein-protein interactions involving human Y chromosome-encoded proteins were searched using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping database, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Pathway Studio software. Finally, the human Y chromosome-encoded protein homologs/orthologs in chimpanzee and mouse were analyzed using the NCBI bl2seq program. This analysis resulted a significant number of homologous/orthologous proteins between human, chimpanzee and mouse. Our findings provide the scientific community with updated information on the Y chromosome-encoded proteins in humans, chimpanzee, and mouse.
        79.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bitter melon (Momordica charantia) is used in traditional herbal medicine in many Asian countries for the treatment of several diseases such as diabetes, eczema, night blindness, psoriasis, and rheumatism. Especially, most reports concerning the biological activities of bitter melon have focused on its effects on diabetes and hyperglycemia. Also, bitter melon is regarded as a longevity food, suggesting that it has several beneficial effects on anti-aging and the maintenance of a healthy state. Thus, we investigated whether bitter melon could increase the capacity of exercise in this study. Interestingly, bitter melon fruit extract activated AMP-activated protein kinase (AMPK), which is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. In addition, bitter melon extract increased the expression of enzymes involved in fatty acid oxidation such as mitochondrial uncoupling protein 3 (UCP3), carnitine palmitoyl transferase 1b (CPT1b), and pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4). Moreover, exercise tolerance was much more enhanced in bitter melon treated animals compared to the non-treated control group. These results suggest that bitter melon is a promising candidate for the development of functional foods beneficial for physical strength and the enhancement of exercise capacity.
        4,000원
        80.
        2016.06 구독 인증기관 무료, 개인회원 유료
        Transcription factor called activating enhancer binding protein 2C (AP2-gamma) is found in a variety of species and expressed from oocyte stage onwards, particularly restricted to the trophectoderm. Recent studies demonstrated that ablation of Tfap2c led to failure of tight junction biogenesis, particularly the knock-down embryos of Tfap2c did not form cavity from morula to blastocyst in mouse and pig. We speculated that the Tfa2pc may also be involved in desmosome biogenesis because blastocoel formation is coincident with the establishment of desmosome. To determine this, we depleted Tfap2c injecting siRNA into one-cell zygote and analysed the expression levels of genes that are required for desmosome complex such as PkP2, Pkp3, Dsc2, and Dsg2. We found only Pkp3 was up-regulated in the knockdowned morula embryos. Interestingly, upstream region of Pkp3 had putative Tfap2c binding sites. In conclusion, our results suggest that Tfap2c is not a crucial factor but somehow it might be involved in desmosome biogenesis directly or indirectly via Pkp3.
        3,000원
        1 2 3 4 5