This study aims to develop a deep learning model to monitor rice serving amounts in institutional foodservice, enhancing personalized nutrition management. The goal is to identify the best convolutional neural network (CNN) for detecting rice quantities on serving trays, addressing balanced dietary intake challenges. Both a vanilla CNN and 12 pre-trained CNNs were tested, using features extracted from images of varying rice quantities on white trays. Configurations included optimizers, image generation, dropout, feature extraction, and fine-tuning, with top-1 validation accuracy as the evaluation metric. The vanilla CNN achieved 60% top-1 validation accuracy, while pre-trained CNNs significantly improved performance, reaching up to 90% accuracy. MobileNetV2, suitable for mobile devices, achieved a minimum 76% accuracy. These results suggest the model can effectively monitor rice servings, with potential for improvement through ongoing data collection and training. This development represents a significant advancement in personalized nutrition management, with high validation accuracy indicating its potential utility in dietary management. Continuous improvement based on expanding datasets promises enhanced precision and reliability, contributing to better health outcomes.
선박과 교각이 충돌하면 생명과 안전에 큰 위협이 될 수 있다. 따라서 선박-교각 충돌력 영향 인자를 식별하고 다양한 충돌 조 건에서의 충돌력에 대한 연구의 필요성이 있다. 본 논문에서는 선박-교각 충돌의 유한요소 모델을 설정하고, 수치 시뮬레이션을 통해 선 적상태, 운항속도, 충돌 각도의 세 가지 입력조건을 조합하여 50가지 케이스에서의 선박-교각 최대 충돌력을 계산하였다. 계산된 유한요 소해석 결과를 사용하여 신경망 추정 모델을 학습하고 최대 충돌력을 추정함으로써 빠른 시간에 최대 충돌력을 추정하는 프로세스를 제 안하였다. 신경망 예측 모델은 가장 기초적인 역전파 신경망과 시간정보를 고려할 수 있는 순환신경망인 Elman 신경망 2가지 모델을 사 용하였다. 10가지 케이스의 테스트 데이터로 시험한 결과 Elman 신경망을 사용했을 경우에 평균상대오차가 4.566%로 역전파 신경망보다 나은 최대 충돌력 추정이 가능함을 확인하였고 8가지 케이스에서 5%이하의 상대오차를 보여 주었다. 본 신경망을 이용한 최대 충돌력 추 정법은 유한요소해석을 수행하지 않아도 되므로 계산 시간이 짧아 선박 항해 중 충돌을 회피할 수 없는 경우 피해를 최소화하는 의사결 정의 기초 방법으로 사용할 수 있다.
자기공명영상은 고해상도의 연부조직에 대한 영상정보를 제공하며, 뇌종양 등 연부조직 진단에 활용된다. 본 연구는 합성곱신경망 인공지능을 통해 뇌종양 자기공명영상 분류성능을 확인해 보고자 한다. 4개 종류로 구분된 3264 장의 MRI 데이터 세트(data set)를 이용하였으며, 인공지능 학습을 위해 훈련용 데이터와 시험용 데이터를 9 : 1, 훈련용 데이터의 10%를 검증용 데이터로 구분하였다. 합성곱신경망은 기본 CNN과 VGG16으로 구성하였으며, 학습 평가는 정확도와 손실율로 확인하였으며, 생성된 모델을 통해 분류성능 정확도를 확인하였다. 실험 결과 과적합은 없었으며, 분류성능은 기본 CNN과 VGG16 각각 67%와 80%의 분류성능을 보였다. 도출된 뇌종양 자기공명영상 분류 결과를 통해 자기공명영상과 인공지능 접목에 관한 기초 자료로 사용될 수 있을 것이라 사료된다.
본 연구의 목적은 Neural Network Regression 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고, 2000년 1월부터 2020년 8 월까지의 해당 데이터를 확보하였다. 변수의 안정성을 판단하기 위해 다중 공선성 검사를 수행하여 최종적으로 6개의 독립변수와 1개의 종속변수를 선정하고 연구 구조를 설계하였다. 이를 바탕으로 Linear Regression, Neural Network Regression, Random Forest Algorithm을 활용하여 총 9개의 시뮬레이션 모델을 설계하였다. 또한 각 모델간의 비교검증을 통해 평가결과의 정확성을 제고시켰다. 평가 결과, VLCC실제값과의 비교를 통해 2층으로 구성된 Hidden Layer의 Neural Network Regression 모델이 가장 정확도가 높은 것으로 나타났다. 본 연구의 시사점은 첫째, 기존 정형화된 평가기법에서 벗어나 기계학습기반 모델을 선박가치평가에 적용하였다는 점이다. 둘째, 해운시 장 변화요인을 동태적 관점에서 분석하고 예측함으로써 연구결과의 객관성을 제고시켰다고 할 수 있다.
이 연구의 목적은 인공신경망 기법을 이용하여 사면의 내진 성능을 비교적 정확하면서도 효율적으로 예측하는 모델을 도 출하는데 있다. 사면의 내진 성능은 지진입력 및 사면모델의 무작위성 및 불확실성으로 인하여 정량화하기 쉽지 않다. 이러한 배경 아래 사면에 대한 확률론적 지진 취약도 분석이 몇몇 연구자에 의해 수행되었고, 이를 기반으로 다중 선형회귀분석 을 통하여 사면 내진성능에 대한 닫힌식이 제안된 바 있다. 그러나 전통적인 통계학적 선형회귀분석은 다양한 조건의 사면과 이에 따른 내진 성능 사이의 비선형적 관계를 정확하게 표현하지 못하는 한계를 보였다. 이에 따라 본 연구에서는 이러한 문제점을 극복하고자 인공신경망 기법을 사면 내진성능 예측 모델을 생성하는데 적용하였다. 도출된 모델의 유효성은 기존 의 다중 선형 및 다중 비선형 회귀분석을 통한 모델과 비교하여 검증하였다. 결과적으로 이전 연구의 전통적인 통계학적 회귀 분석을 통한 모델과 비교 결과, 기본적으로 인공신경망 기법을 통하여 도출된 모델이 사면의 내진성능을 예측하는데 있어 우수한 성능을 보여주었다. 이러한 정확도 높은 모델은 향후 확률에 기반한 사면의 지진취약도 지도를 개발하고, 주요 구 조물의 인근 사면으로 인한 리스크를 효과적으로 평가하는데 활용될 수 있을 것이라 기대된다.
최근 국내외에서는 수질안정성 향상 및 부지면적 저감을 위해 막여과 공정도입이 활발한 추세이며 특히, 정수처리 분야에서는 정밀여과(Microfiltration) 및 한외여과(Ultrafiltration) 공정이 많이 적용되고 있다. 막여과 공정의 경제성 향상을 위해서는 세정 시점의 예측 및 세정 주기 연장이 매우 중요한 요소이다. 따라서, 본 연구에서는 인공신경망(Artificial neural network)을 활용하여 UF 공정차압(Transmembrane pressure) 예측 모델을 개발하고자 한다. 입력변수로는 유입수 온도, pH, 탁도 등의 일평균값을 이용하였다.
Evolutionary computation is a powerful tool for developing computer games. Back-propagation neural network(BPNN) was proved to be a universal approximator and genetic algorithm(GA) a global searcher. The game of Tic-Tac-Toe, also known as Naughts and Crosses, is often used as a test bed for testing new AI algorithms. We tried to recognize the strategic fitness of a finished Tic-Tac-Toe game when the parameters, such as a sequence of moves, its game depth and result, are provided. To implement this, we've constructed an evolutionary model using GA with back-propagation NNs(GANN). The experimental results revealed that GANN, in the very long training time, converges very slowly; however, performance of recognizing the strategic fitness does not meet we expected and, further, increase of the population size does not significantly contribute to the performance of GANN.
본 연구는 신호교차로 교통사고예측모형 구축 과정 중 일반적으로 제한된 변수의 선정 및 모형의 구축에만 주로 초점이 맞추어진 기존 방법론의 문제점을 개선하고, 자료조사 및 수집 과정에서 발생하는 자료의 불확실한 상태를 인정하면서 자료의 불확실성을 최소화하여 이용할 수 있는 방법론을 개발하는데 연구의 주안점을 두었다. 퍼지추론이론과 신경망이론을 이용한 모형을 구축하였고, 마지막으로 구축된 퍼지추론이론 모형 및 신경망이론 모형과 기존 회귀모형인 포아송 회귀모형간의 통계적인 검증과 실제 Data를 이용한 모형의 적정성을 검토하였다. 모형의 통계적인 검증시 기존모형에 비해 퍼지추론모형과 신경망이론모형이 더 설명력이 높은 것으로 나타났고, 검증에서도 퍼지추론이론과 신경망이론이 적절한 것으로 나타났으며 기존모형보다 사고건수를 예측하는 설명력이 높은 것으로 입증되었다. 본 연구에서 개발된 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로는 신호교차로에서 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.
대표적인 엘니뇨 지수인 태평양 Nino 해역의 표층 수온을 예측하기 위해 비선형 통계모델 중의 하나인 신경망 기법을 적용하였다. 신경망 모델 학습 과정의 입력 자료로 1951년부터 1993년까지의 태평양 해역(120˚ E, 20˚ S-20˚ N) NCEP/NCAR의 재분석 표층 수온 편차의 경험적 직교함수 7개 주모드를 사용하였고, 그 중 1994년부터 2003년까지의 10년 결과를 분석하였다. 모든 해역에서의 9개월까지의 신경망 모델의 예측력은 비교적 우수하였으며, 특히 1997년과 1998년의 강한 엘니뇨의 발달 및 소멸도 잘 예측함을 확인할 수 있었다. 해역별로는 Nino3 지역의 예측성능이 가장 높았으며, 9개월 이후부터는 그 예측력이 급격히 감소하였다. 한편 지역적인 영향이 커 예측력이 낮은 동태평양 연안의 Nino1+2 지역은 9개월 이후에도 예측력의 감소가 관찰되지 않았다.
본 논문은 신경망 근사 해석 모델의 원형을 스터브 거더의 거동 해석에 적용하고, 이 과정 중에 발생한 문제점을 파악하여 해결책을 제시함으로써, 앞서 개발한 원형 모델을 스터브 거더 시스템에 적합하도록 발전시키는데 목적이 있다. 스터브 거더의 해석 변수는 주어진 시간 내에 시뮬레이션이 가능하게 7개, 해석 결과값은 탄성 처짐뿐만 아니라 응력까지 고려하여 총 4개의 결과값을 동시에 고려하고, 학습 패턴 수는 총 143개를 사용하였다. 근사해석의 정확도를 향상시키고 학습의 수렴성을 보장하기 위하여 다양한 시뮬레이션을 수행하여 은닉층 뉴런 수, 학습 패턴 그리고 최대 에러의 관계를 규명하고, 이 결과를 바탕으로 신경망 근사 해석 모델 개발 단계를 수정하여 제안하였다.
항만의 주요 정책 및 향후 운영계획 수립 시 정확한 물동량 예측에 관한 연구는 매우 중요하며 이러한 중요성으로 인해 관련 연구가 활발히 수행되고 있다. 본 논문에서는 국내 최대 석탄 및 철광석 처리 항만인 광양항을 대상으로 단계적 회귀분석과 인공신경망모형을 활용하여 모형간 예측력을 비교하였다. 2009년 1월부터 2019년 1월까지 총 121개월의 월별자료를 활용하였으며 석탄 및 철광석 물동량에 영향을 주는 요인을 선정하여 공급관련요인과 시장·경제관련요인으로 분류하였다. 단계적 회귀분석 결과, 광양항 석탄 물동량 예측모형의 경우, 입항선박 톤수, 석탄가격 및 대미환율이 최종변수로 선정되었고 철광석 물동량 예측모형의 경우, 입항선박 톤수, 철광석가격이 최종변수로 선정되었다. 인공신경망모형의 경우, 모델 성능에 영향을 미치는 다양한 Hyper-parameters를 조정하며 최적 모델을 선정하는 시행착오법을 사용하였다. 분석결과 인공신경망모형이 단계적 회귀분석에 비해 우수한 예측성능을 나타내었으며 예측 모형별 예측값과 실측값을 그래프 상 비교 시에도 인공신경망모형이 단계적 회귀분석에 비해 고·저점을 유사하게 나타냈다.
This paper proposes a convolutional neural network model for distinguishing areas occupied by obstacles from a LiDAR image converted from a 3D point cloud. The channels of a LiDAR image used as input consist of the distances to 3D points, the reflectivities of 3D points, and the heights of 3D points from the ground. The proposed model uses a LiDAR image as an input and outputs a result of a segmented LiDAR image. The proposed model adopts refinement modules with skip connections to segment a LiDAR image. The refinement modules with skip connections in the proposed model make it possible to construct a complex structure with a small number of parameters than a convolutional neural network model with a linear structure. Using the proposed model, it is possible to distinguish areas in a LiDAR image occupied by obstacles such as vehicles, pedestrians, and bicyclists. The proposed model can be applied to recognize surrounding obstacles and to search for safe paths.
하천 관리에 있어 도달시간은 중요한 인자 중의 하나이다. 특히 사회적으로 다양한 하천 활용에 대한 요구가 높아짐에 따라 친수공간으로써 하천에서의 정확한 도달시간 산정은 홍수시 주민 대피 시간 확보 등을 위해서 매우 중요하다. 그러나 과거 도달시간 산정에 대한 연구는 자연 하천의 복합 유역에서의 단일 수문사상에 대하여 연구가 수행되어왔으며, 도심하천의 단일유역을 대상으로 복합 수문 사상에 대한 도달시간 산정방법의 개발은 미흡한 실정이다. 따라서 최근 집중호우에 의하여 빈번한 침수 피해가 발생된 부산광역시 대표 도심하천인 온천천 유역에 대하여 과거 10년(2006~2015년) 동안의 강우-유출량 자료를 이용하여 도달시간을 산정하였고, Matlab 기반의 인공신경망 기법을 이용하여 신뢰성을 검토하였다. 12시간 이상 무강우를 기준으로 총 254개의 강우 사상을 분리하였고, 이를 바탕으로 총 강우량, 총 유출량, 첨두 강우량/총 강우량, 첨두 유출량/총 유출량, 지체시간, 도달시간 등 총 6개의 변수를 산정하여 인공신경망 모형의 훈련 및 검증에 활용하였다. 그 결과 훈련에 과 예측 및 검증에 활용된 입력 변수의 상관관계는 각 각 0.807 및 0.728로 나타났으며, 연구결과를 바탕으로 도심하천의 도달시간 산정결과의 신뢰성 분석에 이를 활용할 수 있을 것으로 판단된다.
우리나라의 경우 1990년대부터 환경오염문제의 사회화가 배경이 되어 환경에 대한 관심이 높아짐에 따라 1998년부터 배기가스의 탈황공정이 가동되어 화학석고가 발생하기 시작하였는데 이것이 화력발전소에서 부산물로 나오는 배연탈황석고이다. 국내의 석탄화력 발전소에 설치된 탈황설비는 흡착재로 석회석 분말을 사용하고 부산물로 석고를 생성하는 습식공정으로서, 배연탈황석고는 이수석고(CaSO4⋅2H2O)로 생성되는데, 인산석고와 비교할 때 pH가 중성이며 높은 순도의 균일한 품질을 가지고 있어 발생 전량이 시멘트 및 석고보드 원료로서 재활용되고 있다. 한편 최근 그 수요가 증가하는 고강도콘크리트 혼화재, 슬래그 시멘트에 사용하기 위하여 년간 30만톤 이상 수입되고 있는 천연무수석고는 우리나라에 광물로 부존하지 않는다. 선진국과 마찬가지로 배연탈황 석고가 전량 수입되고 있는 천연석고를 대체할 수 있다는 장점에 대하여 충분히 인식함에도 불구하고, 아직까지 전반적인 기술 기반의 취약성 및 인력 부족으로 석고보드 제조 등 초보적인 수준에 머물러 있으나 최근 콘크리트 혼화재료 제조기업은 중국의 값싼 제품으로 인해 가격 경쟁력을 상실하고 있어 미래 경쟁력 있는 분야로의 전환을 위해 배연탈황 석고를 이용한 고부가성 건설재료 제조 기술에 관심을 가지기 시작하고 있다. 이에 본 연구에서는 지속가능 친환경-고성능 건설용 복합재료의 생산 및 이의 활용 기술을 적극적으로 개발하고자 인공신경망 모델을 활용한 배연탈황석고 모르타르의 배합조건과 물리적 결과값의 데이터를 다양한 알고리즘에 적용하여 이의 분석과 예측의 정확성을 판별하여 기초데이터로 제공하고자 한다.