본 연구는 원자력기술의 혁신특성을 심층조사 함으로써 4세대 원자력에너지기술의 전환 시 발생 가능한 이슈를 이해하고 한국의 정책현황을 분석하여 4세대 원자력에너지기술의 성공적 안착을 위한 시사점을 도출하였다. 이는 현재 세계 5강의 원자력에너지기술강국인 한국에서 4세대 원자력에너지기술의 도래에도 지속가능한 경쟁력을 유지하기 위한중요한 정책적인 시사점으로 활용할 수 있을 것으로 사료된다.
정성적 문헌연구방법을 통해 원자력기술혁신에 관한 문헌들을 조사한 결과, 4세대 원자력에너지기술의 전환에 영향을 미치는 요인은 크게 4가지로 확인할 수 있었다. 이는 장기간의안정적인 자원 할당, 혁신을 위한 이해당사자 간의 지속적인 상호작용, 완전한 시스템을 위한 기술과 노하우의 축적, 적용 및 실증을 위한 정책적인 시장이었다. 이를 한국의 4세대 원자력에너지기술과 연관한 정책을 대상으로 적용하여 사례분석을 한 결과, 현재 4세대 기술이기술개발의 초기단계에서 실증단계로 넘어가는 시점임을 감안하더라도 연관한 정책은 실증과 운영을 위한 전문인력의 체계적인 양성 방안, 사회적 수용성과 저항에 대한 대응, 실증에대한 구체적인 계획 수립, 4세대 원자력시스템을 적용하기 위한 정책적인 시장을 제안하는장기적인 노력, 이해당사자들 간의 구체적이고 지속적인 상호작용을 적극 장려하는 것이 체계적으로 필요함을 제시하였다.
과학기술 수용자는 과학기술 변화과정을 결정하는 중요한 이해관계자이다. 하지 만 이들이 과학기술이슈에 대해 어떤 생각을 가지고 있는지 확인하는 기존의 방법들은 많은 노력과 시간이 필요한 것으로 알려져 왔다. 본 연구에서는 빅데이터 분석에 널리 사용되는 토 픽모델링을 활용해 온라인 토론장에 게시된 글을 분석하여 한국인의 원자력발전에 대한 인식 을 알아보고자 한다. 이것은 거시이슈들이 일반 과학기술 수용자 인식구조에 어떤 영향을 미 치며, 변화된 인식구조의 지속성을 이해하는데 도움을 줄 수 있다. 빅데이터를 이용해 실시간 으로 특정 과학기술이슈에 대한 일반인의 인식을 파악한다면, 과학기술 수용자(일반인)와 공 급자(전문가) 집단 사이의 인식간극을 줄이는데 도움을 줄 수 있을 것으로 기대한다.
To precisely assemble the fuel test rod, an orbital TIG welding system was designed and developed to accurately conduct orbital TIG welding for the nuclear fuel test rod. Using this system, a welding process needs to confirm the welding properties for orbital TIG welding. Therefore, preliminary weld tests were performed on the cladding tubes under various conditions, and the results show that the width and depth of HAZ of the cladding specimen welded using identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a welded end-point because of heat accumulation. The performance tests were conducted under the welding conditions considered through preliminary welding tests, and the properties of the specimens were conformed through surface and microstructure analyses.
Artificial insemination and embryo transfer is one of the most important factors affecting to the production of fawn from deer nuclear transfer in the field of deer farms. This study* was conducted to establish the production technology of nuclear transfered embryo in deer. For estrus synchronization or superovulation tretments in flower deer and elk, each 10 does were inserted into the vagina for 14 days with CIDR (Pfizer New Zealand Ltd., NZ) for elk and Ring-CIDR (Bioculture Co., Ltd., Korea) for flower deer, and then those inserted devices were removed. The estrus synchronization of each 6 does were induced by the intramuscular injection of PGF2α (25 mg/head) and PG600 (hCG 200IU + PMSG 400IU, Intevet, Holland). Then, the superovulation of each 4 does of flower deer and elk was induced by additional injection of FSH (200 mg/ head) twice with an interval of 24 hours , respectively. Follicular oocytes were collected from each 2 does superovulated after 48 hours since the injection of PG600 and FSH. In the meantime, the ovarian response and the number of the collected ovarian follicles were investigated with the surgical operations. As a result, the average number of the collected ovarian follicles were 8.5 and 9.0 in flower deer and elk, respectively. The ovarian follicles collected from each two does were cultured in vitro for 48 hours with m-DMEM medium, and then the cell fusion was carried out after the nuclear transfer by the antler cell. As a result, 5 out of 18 ovarian follicles collected from 2 elk does were reached on the MII stage, but there was no generation resulting from the nuclear transferred embryos by the antler cell after enucleation. In 2 flower does, 7 out of 17 ovarian follicles were reached to the MII stage, but one of them was developed to parthenogenetic embryo as well despite a case of fusion from the nuclear transferred embryo. Embryos were collected in a surgical way on the 7th day after artificial insemination, numbers of average embryos collected were 2.5 and 3.0 in each 2 flower deer and elk does superovulated, respectively. The collected two embryos were transplanted to each 2 does synchronized. As a result, a head of fawn was produced from only one elk doe, where as a head of fawn were delivered from one out of 4 elk does artificial inseminated. Given these findings, we consider that more or less of problems might have occurred in vitro culture system of ovarian follicles in the production of nuclear transfered deer embryos. In addition, the greatest reason why both the aetificial insemination and embryo transfer failed was considered attributable to stress due to anesthesia and catching.
원자력 발전의 고온 가스로(high temperature gas-cooled reactor, HTGR)의 냉각제로 사용되는 He가스의 열에너지를 이용하여 물을 분해해서 수소를 생산하는 "열화학적 수소제조 IS프로세스"에 대해 설명하였다. 특히, 분리막 기술의 이용에 관한 연구를 중점으로 정리하였다. 고온 원자력 열에너지를 이용한 열화학적 수소 제조법은 실현 가능한 단계까지 왔다고 생각되며, 아직 연구 개발 과제가 많이 남아 있지만, 미래의 청정에너지 중의 하나인 수소를 대량 생산할 수 있는 가능성을 갖고 있다.
The International Union for Conservation of Nature and Natural Resources (IUCN) considers the western/lowland bongo Tragelaphus eurycerus eurycerus to be a threatened species, and the eastern/mountain bongo Tragelaphus eurycerus isaaci an endangered species[1]. Although extinction is considered by many biologists to be a natural process during evolution, the exponential growth of the human population has drastically and prematurely reduced the numbers and genetic diversity of many species[2]. Species have evolved to adapt to a specific habitat or environment that meet their survival needs. Alteration or destruction of their habitat results in a species becoming incapable of adapting and hence becoming threatened with extinction. A widespread scientific and public consensus has emerged suggesting that governments should assign high priority to the maintenance of biological diversity via habitat preservation and management far species conservation[3]. Unfortunately, the loss of biological diversity far surpasses the available conservation resources and species are lost forever on a daily basis[4]. Notwithstanding the focus on habitat preservation and wildlife management, conservation biologists have also become increasingly interested in using the technologies of reproductive and developmental biology to help manage or rescue endangered species[5].
This study was undertaken to optimize enucleation and reconstitution methods for the production of cloned mice by somatic cell nuclear transfer Outbred ICR mouse oocytes at the metapahse- II stage were retrieved from female mice superovulated by PMSG and hCG. In Experiment 1, oocytes were enucleated in medium supplemented with cytochalasin B (CCB) of 3 levels (0, 7.5 or 15 /mL), and higher rate of encleation was obtained at 7.5 and 15 /mL than at /mL. In Experiment 2, oocytes enucleated in 7.5 /mL CCB-containing medium were reconstituted with different types of somatic cell by following methods; 1) cumulus cells by direct cell injection, 2) cumulus cells by electric fusion (1.25 kV/cm, 2 pulses for each 70 ) or 3) STO cells by the electrofusion. Electrofusion of STO cells with enucleated oocytes yielded the greatest (P<0.05) rate of reconstitution without lysis (76%) than any other combinations. Although significant decrease in the rate of somatic cell introduction was found, the electrofusion of cumulus cells yielded better rate of reconstitution than direct injection (0 vs. 18%). In Experiment 3, the duration of electric stimulation for the fusion was changed to either 50 or 90 , but no significant improvement of reconstitution efficacy was obtained. In conclusion, this study showed that ICR mouse oocytes could be used for the production of reconstituted oocytes and a fusion method of 1.25 KV/cm with 2 pulses using 570 cell was the optimal.
As existing nuclear power plants reach the end of their lifespan, 22 nuclear power plants in korea are scheduled to be permanently shut down and decommissioned by 2050. Chelates are used as decontamination agents during nuclear power plant operation and decommissioning, and as a result, decommissioning waste contains chelates. Chelates contained in radioactive waste are complexed with radionuclides and increases their mobility. So, qualitative and quantitative analysis of chelates contained in radioactive waste is necessary. However, the spectroscopic method (UVVis), previously used for chelate analysis in Korea takes too much time for analysis and cannot analyze two or more chemically similar chelates at the same time. Due to these problems, new methods for analyzing chelate must be developed. Overseas, many cases of chelate analysis using advanced analysis equipment have been reported. CEA in France has developed a chelate analysis method for application to radioactive waste using HPLC-MS (J. Chromatogram. A, 1276, 20-25, 2013). In this method, the existing method of measuring EDTA using a complex of Fe and EDTA was improved to measuring a complex of Ni and EDTA. Based on such overseas cases, we would like to develop an analysis method for chelates in radioactive waste. For this purpose, we will verify similar overseas papers and develop pretreatment methods for mixtures of chelates (EDTA, DTPA, NTA) and metals (Fe, Ni, Cu, etc.) in various media. Finally, we will develop a separation analysis technology for multi-component chelates in nuclear decommissioning waste based on LCMS.
Kori Unit 1 nuclear power plant is a pressurized water reactor type with an output of 587 Mwe, which was permanently shut down on June 18, 2017. Currently, the final decommissioning plan (FDP) has been submitted and review is in progress. Once the FDP is approved, it is expected that dismantling will begin with the secondary system, and dismantling work on the primary system of Kori Unit 1 will begin after the spent nuclear fuel is taken out. It is expected that the space where the secondary system has been dismantled can be used as a temporary storage place, and the entire dismantling schedule is expected to proceed without delay. The main equipment of the secondary system is large and heavy. The rotating parts is connected to a single axis with a length of about 40 meters, and is complexly installed over three floors, making accessibility very difficult. A large pipe several kilometers long that supplies various fluids to the secondary system is installed hanging from the ceiling using a hanger between the main devices, and the outer diameter of the pipe is wrapped with insulation material to keep warm. In nuclear secondary system decommissioning, it is very important to check for radiation contamination, establish and implement countermeasures, and predict and manage safety and environmental risks that may occur when cutting and dismantling large heavy objects. So we plan to evaluate the radiation contamination characteristics of the secondary system using ISOCS (In- Situ Object Counting System) to check for possible radioactive contamination. According to the characteristics results, decommissioning plans and methods for safe dismantling by workers were studied. In addition, we conducted research on how to safely dismantle the secondary system in terms of industrial safety, such as asbestos, cutting and handling of heavy materials and so on. This study proposes a safe decommissioning method for various risks that may occur when dismantling the secondary system of Kori Unit 1 nuclear power plant.
A person who performs or plans to conduct a physical protection inspection as stipulated by the law, the act on physical protection and radiological emergency, should obtain an inspector’s ID card certified and authorized by Nuclear Safety and Security Commission Order No.137 (referred to as Order 137). In addition, according to Order 137, KINAC has been operating some training courses for those with the inspector’s ID card or intending to acquire it. Also, strenuous efforts have been put to incrementally elevate their inspection related expertise. Since Republic of Korea has to import uranium enriched less than 20% in order to manufacture fuels of nuclear reactors in domestic and abroad, the physical protection for categorization III nuclear material in transit is significantly important along with an increase in transport. The expertise of inspectors should be constantly needed to strengthen as the increase in transport leads to an increase in inspection of nuclear material in transit. We have suggested a special way to improve the inspector’s capacities through Virtual Reality technology (VR). A 3-Dimensional virtual space was designed and developed using a 3-axis simulator and VR equipment for practical training. HP’s Reverb G2 product, which was developed in collaboration with VALVE Corporation and MicroSoft, was used as VR equipment, and the 3-axis motion simulator was developed by M-line STUDIO corp. in Korea for the purpose of realizing virtual reality. The training scenarios of transport inspection consist of three parts: preparation at the shipping point, transport in route including stops and handover at the receiving point. At the departure point, scenario of the transport preparation is composed with the contents of checking the transport-related documents which should be carried by shipper and/or carrier during transport and confirming who the shipper and/or carrier is. Second, scenario is designed for inspector to experience how carrier and/or shipper protect the nuclear material during transport or stops for rests or contingency and how they communicate with each other during transport. Lastly, scenario is developed focusing on key check items during handover of responsibilities to the facility operator at the destination. Those training scenarios can be adopted to strengthen the capabilities of those with inspector’s ID card of physical protection in accordance with Order 137 and to help new inspectors acquire inspectionrelated expertise. In addition, they can be used for domestic education to promote understanding of nuclear security, or may be used for education for people overseas for the purpose of export of nuclear facilities.
The nuclide management technology for separating high-heat generating/high-mobility/long-lived nuclides from high-level wastes based on the chemical reactions is under development. In order to secure the reliability of nuclear non-proliferation and to implement the effective safeguards, it is necessary to consider the safeguards from the conceptual design phase of the novel technologies. However, there was no experience and research on safeguards for the chemical reaction based nuclide management technology. In order to development the available monitoring techniques for the safeguards of nuclide management technology, the possible diversion scenarios were developed and the material flows of major nuclear materials were analyzed according to the various diversion strategies for each unit process in this study. The diversion strategies in this study is limited to the diversion of nuclear materials according to the change of operational parameters (temperature, chemical reagents, pressures, etc). The nuclear material distribution behaviors under the abnormal conditions were analyzed and compared with normal conditions using the HSC Chemistry. The results will be used to determine the proper signals and feasible techniques to monitor the abnormal operations.