This study was carried out to establish various physiological changes according to soil water stress and to compare the degree of water stress between two species of grapevines (‘Jinok’ as a new breeding cultivar and ‘Campbell Early’ as a control) using thermography. Soil water potentials were treated at -70, -30, and -5 kPa with waterlogging for 7 days. Regarding the photosynthetic rates (A) of the two cultivars, they showed an order of –30 kPA > -5 kPa > -70 kPa in order. With -70 kPa and waterlogging treatments, a decrease of photosynthetic rate was observed at 3 days after treatment, with a more significant decrease accumulating over time. At 7 days after treatment, photosynthetic rates of ‘Campbell Early’ (33.3, 45.6%) and ‘Jinok’ (56.6, 57.3%) grapes decreased compared to those with -30 kPa treatment. H2O2 and proline synthesis were the highest with the waterlogging treatment. In terms of proline synthesis, ‘Campbell Early’ had a relatively higher rate than ‘Jinok’. Leaf and stem water potential were the lowest with the -70 kPa treatment and the highest with the - 30 kPa treatment f or both cultivars. Crop water stress index (CWSI) showed the following order: waterlogging > -70 kPa > -5 kPa > -30 kPa, which was the opposite result of water vapor transfer (IG). As a result of correlation analysis between factors, photosynthetic rate showed negative correlations with the water potential of leaf and stem and crop water stress index but a positive correlation with the relative water content of leaves. Thus, tolerance to water stress of ‘Campbell Early’ was relatively stronger than that of ‘Jinok’ grape. It is possible to compare water stress using infrared imaging.
This study was conducted to investigate the effect of waterlogging stress on the physiological response and growth characteristics of the five Italian ryegrass varieties. For all varieties, the germination rate of seed decreased by 10-15% as the waterlogging period increased, but the waterlogging stress treatment after the early seedling stage increased the growth of shoot and root length. Photosynthetic activity (Fv/Fm) according to waterlogging stress treatment decreased in all vareity, and Florida 80 showed the least decrease with 1.5%. Waterlogging stress treatment was found to reduce the accumulation of reactive oxygen species (malondialdehyde, MDA) and the activities of antioxidant enzymes. These results suggest that other mechanisms may be involved in the defense mechanism of Italian ryegrass against waterlogging stress, such as promoting root growth to escape from waterlogging stress, in addition to the antioxidant enzyme system.
Acidic soil significantly reduces crop productivity mainly due to aluminum (Al) toxicity. Alfalfa (Medicago sativa L.) roots were exposed to aluminum stress (Al3 +) in calcium chloride (CaCl2) solution (pH4.5) and root growth, physiological and antioxidant enzyme responses were investigated. The root growth (length) was significantly inhibited after 48 h of aluminum stress imposition. Histochemical staining with hematoxylin indicated significant accumulation of aluminum in Al stress-treated root tissues. Histochemical assay were also performed to detect superoxide anion, hydrogen peroxide and lipid peroxidation, which were found to be more in root tissues treated with higher aluminum concentrations. The enzymatic activity of CAT, POD and GR in root tissues was slightly increased after Al stress treatment. The result suggests that Al stress alters root growth in alfalfa and induces reactive oxygen species (ROS) production, and demonstrates that antioxidant enzymes involved in detoxification of Al-mediated oxidative stress.
This study was performed to evaluate the effect of heat stress on the status of physiological responses, blood parameter, serum T3 and cortisol, and heat shock proteins (HSP 27, 70, and 90) of Hanwoo cattle. Six Hanwoo steers (242.8 ± 7.2 kg of BW) were housed in the climate-controlled respiration chambers. The experiment consisted of 7 days (control; 0 day) at thermoneutral (air temperature (Ta) of 15oC and relative humidity (RH) of 60%; temperature-humidity index (THI) = 64), and by 3 and 6 days (treatment groups) at heat stress (Ta of 35oC and RH of 60%; THI = 87). Body temperature of each parts (frank, rump, perineum and foot) and rectal temperature elevated in heat stress groups (3 days and 6 days) than the control group (0 day). Respiration rates increased in 3 days and 6 days (88.5 ± 0.96 bpm and 86.3 ± 0.63 bpm, respectively) from 0 days (39.5 ± 0.65 bpm). Feed intake significantly decreased in heat stress groups (3 days and 6 days, 3.7 ± 0.14 kg and 4.0 ± 0.15 kg, respectively) than the control group (0 day, 5.0 ± 0.00 kg). In addition, final BW significantly decreased in heat stress groups (3 days and 6 days, 211.8 ± 4.75 kg and 215.5 ± 3.50 kg, respectively) than the control group (0 day, 240.0 ± 25.00 kg). However, heat stress has no significant effect on blood parameter, serum T3 and cortisol. Nevertheless, heat stress increased HSPs mRNA expression in liver tissue, and serum concentration of HSPs. Despite Hanwoo cattle may have high adaptive ability to heat stress, our results suggested that heat stress directly effect on body temperature and respiration rate as well as serum and tissue HSPs. Therefore, we are recommended that HSPs could be the most appropriate indicators of Hanwoo cattle response to heat stress.
Background: Stress urinary incontinence (SUI) is an involuntary leakage of urine from the urethra when intra-abdominal pressure increases, such as from sneezing, coughing, or physical exertion. It is caused by insufficient strength of the pelvic floor and sphincter muscles, resulting from vaginal delivery, obesity, hard physical work, or aging. The pelvic floor electrical stimulator is a conservative treatment generally used to relieve the symptoms of urinary incontinence. it recommended to applied before surgery is performed.
Objects: The purpose of this study was to determine if the transcutaneous electrical stimulation (TCES) would be effective for the physiological symptoms and psychological satisfaction of women with SUI for an 8-weeks intervention.
Methods: Easy-K is a specially designed user-friendly TCES. Five female who were diagnosed with SUI by a gynecologist but who did not require surgical intervention were included in this study. Intervention was implemented over an 8-week period. Outcome measures included vaginal ultrasonography, Levator ani muscle (LAM) contraction strength, incontinence quality of life (I-QOL), and female sexual function index (FSFI) questionnaires.
Results: The bladder neck position significantly decreased across assessment time. Funneling index and urethral width significantly decreased after 8 weeks of intervention (p<.05). The bladder necksymphyseal distance and posterior rhabdosphincter thickness statistically increased and the anterior rhabdosphincter thickness showed a tendency to increase. All participants demonstrated a significant increase in the LAM contraction score across three assessment times (p<.05). Although the total score of the I-QOL did not show significant improvement, it steadily increased and among I-QOL subscales, only the “avoidance” subscale showed statistical improvements (p<.05). The total score of the FSFI statistically improved and the “desire” score significantly changed (p<.05).
Conclusion: The TCES is recommended for women who want to apply conservative treatments before surgery and who have suffered from SUI in aspects of sexual function and quality of life.
Drought is one of the key limiting factors that adversely affects the growth and productivity of crop plants. For the enhancement of drought tolerance in crop plants, the identification of basic mechanisms of a plant to drought stress is necessary. In this study, we compared physiological and biochemical responses of five local Arundenilla hirta ecotypes to drought stress. These ecotypes were previously collected from various parts of Korean peninsula, including Youngduk, Gunsan, Jangsoo, Jinju-1 and Yecheon. A. hirta plants were exposed to drought stress for 14 and 17 days respectively, followed by re-watering for 3 days. The results showed that the lipid peroxidation (MDA), hydrogen peroxide (H2O2), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, and proline level were significantly increased while the chlorophyll content was decreased by drought stress in A. hirta leaves. The highest proline content and DPPH scavenging activity were shown in Ecotype of Youngduk with least MDA and H2O2 levels while the highest MDA and H2O2 contents, and least proline and DPPH levels were shown in Gunsan, respectvely. These results indicate that the Youngduk is the most tolerant and Gunsan is the most sensitive ecotype among the five different collections. Together, these results provide a new insight of overall physiological responses of A. hirta to drought stress.
To investigate effects of starvation on physiological changes, stress response, and survival of cobitid loach (Misgurnus anguillicaudatus) exposed to sodium nitrite (NaNO2), a 4- week experiment was conducted. Fewer fish survived in the starved group than those in the fed group during the experiment. Starvation resulted in growth retardation, leading to differences in body length and body depth between fed and starved groups. The fed gorup continued to grow and remained in good condition. Blood chemical analysis (plasma cortisol and glucose) showed significant differences in stress response to nitrite exposure between fed and starved groups (p < 0.05). These results suggest that all parameters employed in this study to assess effects of starvation with NaNO2 stress are useful information for researching nutritional status in cobitid loach.
Environmental stresses caused by climate change, such as high temperature, drought and salinity severely impact plant growth and productivity. Among these factors, high temperature stress will become more severe during summer. In this study, we examined physiological and molecular responses of maize plants to high temperature stress during summer. Highest level of H2O2 was observed in maize leaves collected July 26 compared with June 25 and July 12. Results indicated that high temperature stress triggers production of reactive oxygen species (ROS) in maize leaves. In addition, photosynthetic efficiency (Fv/Fm) sharply decreased in leaves with increasing air temperatures during the day in the field. RT-PCR analysis of maize plants exposed to high temperatures of during the day in field revealed increased accumulation of mitochondrial and chloroplastic small heat shock protein (HSP) transcripts. Results demonstrate that Fv/Fm values and organelle-localized small HSP gene could be used as physiological and molecular indicators of plants impacted by environmental stresses.
Physiological responses and activities of antioxidative enzymes were investigated in pepper(Capsicum annuum) seedlings subjected to low temperature stress. The seedlings were exposed to 7℃, 11℃, or 15℃ for 4 h during the early seedling stage of pepper plants. The results showed that plant height and chlorophyll content were unaffected by the treatments. Polyphenol content in seedlings exposed to 7℃ was higher than that at 11℃ and 15℃ for 2 h. After 3 h of treatment, the flavonoid content was higher in pepper seedlings exposed to 7℃ than 11℃ and 15℃, which was slightly higher than that detected in the control. The H2O2 content increased remarkably with increasing exposure time to low temperature(i.e., 7℃) as compared to that at 11℃ and 15℃. The levels of antioxidant enzymes superoxide dismutase(SOD), catalase(CAT), ascorbate peroxidase(APX), and peroxidase(POD) fluctuated. These results provide basic information that can be utilized to maintain efficient temperature in greenhouses for sustainable growth of pepper under severe low temperature conditions.
The ability of plants to endure environmental stress factors, which are going to be more severe due to global warming, is important especially for forest plants. Because obtain trait of resistance to temperature using conventional breeding for woody plants is a time consuming way. In this study, chloroplast-localized OsHSP26 gene was overexpressed in Populus alba L. to breed tolerant transgenic poplar to temperature stress. The plantlets of OsHSP26-overexpressed transgenic poplar showed more heathy phenotypic response than wild-type plants under both prolonged low- and high-temperature stress. While the SPAD value, which refers chlorophyll content, in wild-type plants decreased depending on the exposure time to the temperature stress, higher SPAD value were shown in the transgenic plants. The contents of total phenolic compounds in the transgenic plants were lower than those of the wild-type plants, and not significantly changed except in the treatment of prolonged low-temperature. However, the total flavonoids contents of the transgenic plants were dramatically increased under prolonged temperature stress. The DPPH scavenging activities of the transgenic plants were higher than those of the wild-type plants under temperature stress. Consequently, it was revealed that overexpressing OsHSP26 allow for P. alba to be tolerant to temperature stress.
in vitro studies on salt torerance was carried out with Salix gracilistyla. Shoot growth of plants treated with NaCl showed statistically significances among different levels of concentration(0~200 mM) on 1/2MS medium. Plant growth was not grown at in higher concentration than 75 mM and plants were dead over 150 mM Nacl Browned leaf was observed from 14 days at higher concentration than then 75 mM NaCl, and chlorophyll content was dramatically decreased. Main roots and rootlet in same concentrates(75 mM) or high NaCl treatment were changed the color to black. The proline and sugar contents were dramatically increased in the higher than 75 mM NaCl treatments after 14 - 15 days. To determine NaCl and minerals in salt stressed plants, leaf, stem and root of in vitro plant were subjected to ICP analysis. Na content was increased with culture days in all three parts. These results suggest that S. gracilistyla can be used vegetative restoration in coastal wetlands reclaimed.
본 연구는 고온기 때 사료 내 다른 에너지 수준 및 비테 인 첨가 급여가 육성돈의 영양소 소화율 및 생리학적 변화 에 미치는 영향을 구명하기 위해 실시하였다. 실험동물은 삼원교잡종(L×Y×D; initial body weight, 73.5±0.5kg) 거세 수퇘지 12두를 사용하였고 대사틀에 배치하였다. 실험기간 은 고온기인 7~8월에 실시하였다. 실험계획은 에너지 2수 준(3,300 및 3,400kcal/kg)과 비테인 2수준(0 및 0.5%)이며 4×4 Latin square로 하였다. 조단백질 소화율은 고에너지 사료(3,400kcal/kg)가 저에너지 사료보다 유의적으로 높았 다(p<0.01). 그러나, 비테인급여는 영양소소화율에 영향을 미치지 않았다. 혈액생화학적 분석 결과에서는 에너지 수 준 및 비테인 첨가가 육성돈 내 생리적 변화를 보이지 않 았다. 면역반응을 나타내는 혈중 IgG에서는 고에너지 사료 가 저에너지사료보다 높았으나(p<0.05) 스트레스 지표를 나타내는 cortisol농도에서는 차이가 나지 않았고, 비테인 첨가급여는 IgG 및 cortisol 농도 변화를 나타내지 않았다. 결론적으로 사료 내 비테인 첨가급여보다 에너지 수준을 높이는 것이 돼지 체내에 더 긍정적인 효과를 보이며, 여 름철 고온스트레스를 받는 돼지 사료 내 고에너지를 급여 했을 때 어떠한 결과가 나오는지 추후 더 연구해 볼 만한 것으로 사료된다.
고주파 처리는 파밤나방(Spodoptera exigua)의 생리변화를 유발시켜 섭식행동, 발육 및 면역반응의 변화를 초래한다. 본 연구는 이러한 고주파의 영향을 파밤나방의 생화학적 변화를 통해 분석했다. 고주파(5,000 Hz, 95 dB) 처리는 중장 상피세포의 단백질 합성과 분비를 억제시켰다. 또한 이 고주파 처리는 중장의 인지질분해(phospholipase ) 소화효소의 활성을 현격하게 억제시켰다. 고주파 처리는 세 종류의 열충격단백질과 지질운송단백질(apolipophorin III)의 유전자 발현을 변동시켰고 이러한 변화는 중장 조직에서 뚜렷했다. 혈림프 혈장에 존재하는 지질 및 유리당의 함량이 고주파 처리에 의해 현격하게 증가했다. 이러한 결과는 고주파 처리가 파밤나방의 체내 생화학적 변화를 유발시켜 생리적 교란을 유도하는 스트레스로 작용한다는 것을 제시하고 있다.
Sound treatments have been considered as a non-chemical insect pest control technique. Different frequency and intensity sounds were applied to immune and adult stages to screen any stress sounds to alter physiological processes. At 95 dB, 5,000 Hz and 30,000 Hz were selected to be stress sounds in audible and inaudible sound ranges, respectively. Both stress sounds significantly inhibited larval and pupal development. In biochemical analyses, lipid and sugar levels in plasma signigicantly increased in response to the stress sound treatments. Moreover, a digestive phospholipase A2 enzyme activity in midgut was significantly reduced. In adult stage, ultrasound treatment significantly inhibited mating behavior, which resulted in a reduced fecundity. These stress sounds altered gene expressions of stress-related genes, such as heat-shock proteins and apolipophorin III. This study suggests that extreme sounds play a role in physiological stress factors in S. exigua by altering developmental and reproductive processes.
본 연구는 간척지에서 재배가 가능한 내염성 보리 품종육성을 위한 기초정보를 얻고자 겉보리 두 품종을 대상으로 생육초기 염 스트레스에 따른 생리적 반응과 잎 프로테옴의 발현양상 변화를 분석한 결과는 아래와 같다.
1. 토양의 염 농도가 증가함에 따라 보리의 건물중은 무처리구에 비해 유의적으로 감소하는 경향이었으며, 상록보리는무처리구에 비해 건물중 감소가 작았으며, 선우보리는 컸다.
2. 염처리에 따른 잎의 엽록소 함량을 나타내는 SPAD 값은상록보리가 57.6으로 47.6인 선우보리보다 높았으며, Na+의 함량은 선우보리에서 유의적으로 높았고, K+/Na+의 비율은 상록보리에서 높은 경향을 보였다.
3. 이차원전기영동에 의하여 염 스트레스에 의한 잎 프로테옴의 발현양상을 분석한 결과 47개 단백질 spot이 발현양의차이를 나타냈다. 품종별로 발현양이 증가한 단백질 spot은 상록보리와 선우보리에서 각각 17개와 14개로 나타났고, 발현양이 감소한 단백질 spot은 상록보리와 선우보리에서 각각 28개및 27개로 확인되었다.
4. 염처리에 따른 발현양의 차이를 보이는 18개 단백질을 동정한 결과 ribosomal protein 등 기능과 스트레스와의 관련성이 보고된 10개의 단백질과 ankyrin repeat domain protein등 스트레스 조건에서의 역할이 명확하지 않은 4개의 단백질및 Os02g0753300 등 기능 및 스트레스와의 관련성을 알 수없는 2개의 단백질이 동정되었다.
화이트 클로버에서 마이코라이자 접종이 가뭄스트레스와 관련된 생리학적 요인들을 조사하기 위하여, 마이코라이자 접종 (AM) 또는 비접종구에서 정상관수 (WW) 또는 가뭄 스트레스 처리 (DS)하여 7일동안 주기적으로 잎 수분포텐셜, 상대수분함량, 건물중, 광합성효율, 증산, 기공전도성, 프롤린 및 암모니아 함량을 각각 측정하였다. 모든 조사항목에서 정상적인 관수조건 (대조구)에서는 전 시험기간 중 변화가 매우 적었으며, 마이코라이자 접종에 의한 변화도 매
This study investigated the adverse effects of sound treatment on physiological processes of the American leafminer, Liriomyza trifolii, during several developmental stages. Larval feeding activity was analyzed by measuring feeding tunnel length. It was significantly suppressed by sound treatment (5,000 Hz, 95 dB). Sound treatment delayed the pupal period at 315 - 5,000 Hz and prevented adult emergence at 1,000 - 5,000 Hz. Female oviposition was also inhibited by the stress sound treatments. However, phototactic adult movement was not affected by sound treatment. Pupae treated with 5,000 Hz showed marked changes in protein pattems analyzed by two dimensional electrophoresis. MALDI-TOF analysis of specific protein spots indicated that trafficking protein particle complex I, triosephosphate isomerase, hypothetical protein TcasGA2_TC013388, polycystin-2, paraneoplastic neuronal antigen MAl, and tropomyosin I (isoform M) were predicted in the control insects and disappeared in the insects treated with sound. By contrast, DOCK9, cytoskeletal keratin II, and F0F1-ATP synthase beta subunit were predicted only in the sound-treated insects. Furthermore, stress sound significantly increased the susceptibility of L. trifolii to insecticides. These results suggest that physiological processes of L. trifolii are altered by sound stress, which may be exploited to develop a novel physical control tactic against L. trifolii.
This study analyzed effects of different sound treatments in frequencies and intensities on digestion and immune physiological processes of the beet armyworm, Spodoptera exigua larvae. Without effect on egg hatch, sound treatments with 100-5,000 ㎐ at 95 ㏈ suppressed feeding behavior and inhibited a digestive enzyme activity. In addition, two dimensional electrophoresis of midgut luminal proteins indicated a marked difference of the sound-treated larvae. In response to 5,000 ㎐ at 95 ㏈, larvae showed a significant decrease in hemocyte nodule formation against fungal challenge along with significant suppression in phospholipase A₂ activity in hemocyte and plasma. With increase of sound frequencies, the treated larvae showed an enhanced susceptibility to insecticides. Such sound frequency effect was significantly modulated with different sound intensities. These results suggest that sound treatment may give adverse stress to physiological processes of S. exigua larvae and may be applied to a nonchemical insect pest control.