검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 93

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a shot peening was conducted to improve fatigue life by increasing resistance to hydrogen embrittlement of STS316 steel, which is widely used in hydrogen environments. First, considering the efficiency of the shot peening process, an effective Almen intensity was selected and applied to the specimen surface. Second, the specimen was hydrogen embrittled at room temperature (25°C) and high temperature (60°C) using electrochemical hydrogen charging. Third, the mechanical property tests (tensile, hardness, roughness) and 4-points rotational bending fatigue tests of the specimen were performed. All mechanical properties decreased, but the fatigue life of the shot peened specimens improved at the both temperature conditions. Ultimately, the fatigue characteristics against hydrogen embrittlement of STS316 steel, which is used in various industrial fields, are improved through an effective shot peening process, and the effect is believed to be very significant.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
        4,000원
        3.
        2023.11 구독 인증기관·개인회원 무료
        As the decommissioning of domestic nuclear power plants (Gori Unit 1 and Wolseong Unit 1) becomes more visible, many research projects are being conducted to safely and economically decommissioning of domestic nuclear power plants (NPPs). After permanent shutdown, decommissioning of NNPs proceeds through decontamination, cutting of main equipment, waste disposal and site restoration stages. And various technologies are applied at each stage. In particular, remote cutting of neutron induced structures (RV, RVI, etc.) is a technology used in developed countries in the cutting stage, and remote cutting has been evaluated as a core technology for minimizing workers’ radiation exposure. Generally, remote cutting technologies are divided into mechanical/thermal/electrical cutting. Among various thermal cutting technologies, plasma arc cutting (PAC) is more economical and easily to remote control than other cutting technologies, and is also effective in cutting STS304 plates. PAC is a thermal cutting technology that melts the base material at the cutting area with a plasma arc heat source and removes melted material by blowing it out with cutting gas. The cutting quality depends on the stand-off distance and power (current), material thickness, cutting speed, etc., while double arcing will occur if the cutting conditions are not suitable. A monitoring system that can confirm double arcing during remote cutting is necessary because double arcing can reduce cutting quality, increase secondary waste (increase kerf and aerosol), and cause non-cutting. In this study, we used an ultrahigh-speed camera equipped with a band-pass filter to capture clear arc shapes, and measured voltage waveforms with a data acquisition system. We studied a monitoring method that can confirm the occurrence of double arcing by synchronizing the obtained arc shape and voltage waveform, and the effects of double arcing on the STS304 plates. The results of this study are expected to be helpful in the development of the remote cutting process using plasma arc cutting when decommissioning of domestic NPPs.
        4.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Demand for research on the use of hydrogen, an eco-friendly fuel, is rapidly increasing in accordance with global environmental problems and IMO environmental regulations in the shipbuilding and marine industry. In the case of hydrogen, similar to liquefied natural gas, it has a characteristic that its volume decreases hundreds of times during phase transformation from gas to liquid, so it must be stored in a tank in the form of liquefied hydrogen for transport efficiency. The material of the liquid hydrogen tank is selected in consideration of mechanical properties and hydrogen embrittlement at cryogenic temperatures. In this study, welding research was conducted on STS316L material, which was most commonly used in the space industry. In this study, flux cored arc welding was performed under 4 welding conditions to derive the optimal welding conditions for STS316L material, and then mechanical properties of the welded part were compared and analyzed.
        4,000원
        5.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.
        4,000원
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 °C on the microstructure and hardness has been investigated.
        4,000원
        8.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The penetration depth, bead height, width, and internal porosity were analyzed to select the perfect penetration conditions for the STS316L tube material with an outer diameter of 38.1mm and a thickness of 3.4 mm. The welding conditions to secure a penetration depth of 3.4mm or more were selected. In addition, a welding range in which underfill does not occur was selected. The range of the selected conditions is the condition of a welding speed of 0.75 to 1.25m/min with an output of 2.0kW. The selected welding conditions were applied to STS316L tube orbital welding, and as a result of cross-sectional inspection after welding, a welded part of less than 4% of complete penetration and porosity was secured. The strength of the weld was measured to be more than 800kgf, and the hardness of the weld was found to decrease compared to the base material. The decrease in the hardness of the weld is judged by the annealing effect of the heat treated base material.
        4,000원
        9.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 μm. The hardness of STS 440C alloy is improved by austenitization at 1,100 oC with sub-zero treatment and tempering at 200 oC. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.
        4,000원
        10.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the part of efforts to respond to the environmental pollution, the demand for clean energy is increasing. Natural gas is one of the most realistic alternatives, and interest in the storage and transportation containers to utilize the natural gas is growing. The production area of ​​natural gas is limited, and in Korea, it is imported in the form of liquefied natural gas. LNG is a cryogenic state with a vaporization point of -163°C, so the ordinary metal cannot be used due to its brittleness. The international maritime organization (IMO) defines the metals that can handle LNG in the IGC Code, and the research is ongoing. This study was a preliminary study to check the weldability of related metals and confirmed the shape of bead on plate (BOP) during the laser welding for each material. In part I, a study was conducted on the high manganese steel, and in part II, a study was conducted on the materials of STS304L and STS316L among the stainless steel. Based on this study, it can be used as an optimal welding condition for the butt and fillet welding.
        4,000원
        11.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A magnetic abrasive finishing process was proposed for improving the surface accuracy of microscale -diameter STS 304 bar used in many applications such as, medical, aerospace, and nuclear industries. Most of the previous research has already explored the conventional finishing technique to improve the accuracy of material in terms of the surface roughness. However, their results are still not good enough for the requirement in the today’s engineering industry. Especially, when the workpiece is a material of microscale-diameter, use of such conventional processes becomes impossible because they entail the application of high pressures that may damage the surface to be finished. Moreover, less control is available over these conventional finishing processes. In this study, an ultra-high-precision magnetic abrasive finishing process was applied to the precision machining of microscale-diameter STS 304 bar and the experimental work are performed with many critical parameters such as, different workpiece revolution speeds, abrasive grain sizes, different finishing temperatures, and pole vibrations. The results showed that in The initial surface roughness of 0.20 μm (Ra) was decreased to 0.025 μm with 0.5 μm of abrasive grain size and pole vibration 12Hz at 40,000 rpm.
        4,000원
        12.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the magnetic abrasive finishing process using (Nd-Fe-B) permanent magnet was applied to confirm the performance and to find the optimum conditions. The STS304 bar was used as the specimen in this experiment. In order to confirm the performance of magnetic abrasive finishing process, the surface roughness (Ra) and diameter reduction were measured when the specimens were processed under the conditions of rotational speeds, frequencies, and magnetic pole shapes. The rotational speeds were varied at 8000rpm, 15000rpm, 20000rpm, and 25000rpm. And the frequencies were changed to 0Hz, 4Hz and 10Hz. Also the shapes of the magnetic pole were changed to flat edge, sharp edge and round edge. It can be concluded that the surface roughness (Ra) and diameter reduction were found to be the best at 25000rpm, 4Hz, flat edge.
        4,000원
        13.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of α-Fe and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in α-Fe, and the fine lamellar shaped eutectic microstructures changed into large α-Fe and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellarshaped eutectic microstructures and the increase in spheroidized intermetallics.
        4,000원
        15.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, STS316L powders prepared by gas atomization are used to manufacture bulk structures with dimensions of 10 × 10 × 10 mm3 using selective laser melting (SLM). The microstructures and hardness of the fabricated 316L stainless steel has been investigated with the laser beam overlap varied from 10% to 70%. The microstructures of the fabricated STS316L samples show a decrease in the balling and satellite of powders introducing defect in the bulk samples and the porosity caused by the gap between the molten metal pools disappearing as the overlap ratio increases, whereas a low overlap ratio results in significant balling and a large amount of isolated powders due to the increased gap between the melt pools. Furthermore, the highest value in Vickers hardness is obtained for the sample fabricated by 30% overlapped laser beams. These results show that the overlap ratio of laser beams in the SLM process should be considered as an important process parameter.
        4,000원
        18.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates on the tuning stainless steel(STS630) to understand for groove cutting characteristics. For this purpose, we observed the cutting force according to feed rate and cutting speed variation and performed the computational analysis due to groove cutting depth. In groove cutting of stainless steel, there were principal force, feed force and radial force by arranging the highest cutting force in order. In case of wall thicknesses of 0.3mm and 0.5mm at groove cutting, principal force increases according to the increase of feed rate but it is not related to cutting speed. We found the unstable region of cutting force that is caused to the friction resistance of cutting tool and elastic deformation of groove wall. In computational analysis, we confirmed that the more feed rate increases, the more strain increases around the tooth root.
        4,000원
        19.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with optimized structural analysis of stainless rectangular water reservoirs with 5,000ton capacity for various combined load cases. The objective of this study is to propose most efficient structural models through the comparison of various model cases. In order to perform an optimized analysis, three dimensional finite element analyses are carried out for large sized models. The numerical results obtained provides the detailed size and thickness for optimal design of water reservoir. In particular, results reported in this paper show the influence of various types of loading and dimensions of the wall and stiffened column on the structural behavior of the large sized water tanks.
        4,000원
        1 2 3 4 5