검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pressure sensor had been widely used to effectively monitor the flow status of the water distribution system for ensuring the reliable water supply to urban residents for providing the prompt response to potential issues such as burst and leakage. This study aims to present a method for evaluating the performance of pressure sensors in an existing water distribution system using transient data from a field pipeline system. The water distribution system in Y District, D Metropolitan City, was selected for this research. The pressure data was collected using low-accuracy pressure sensors, capturing two types of data: daily data with 1Hz and high-frequency recording data (200 Hz) according to specific transient events. The analysis of these data was grounded in the information theory, introducing entropy as a measure of the information content within the signal. This method makes it possible to evaluate the performance of pressure sensors, including identifying the most sensitive point from daily data and determining the possible errors in data collected from designated pressure sensors.
        4,200원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
        4,200원
        3.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy’s status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of ‘AIR_TEMPERATURE’ data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real- world scenarios.
        4,300원
        4.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate high performance classification models of fall risk of older adults. Objects: This study aims to develop a classification model of fall risk using IMU data and clinical measurements in older adults. Methods: Twenty-six older adults were assessed and categorized into high and low fall risk groups. IMU sensor data were obtained while walking from each group, and features were extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), which generated classification models to differentiate high and low fall risk groups. Model’s performance was compared and presented with accuracy, sensitivity, and specificity. Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2. Conclusion: Our results suggest that the fall risk classification using IMU sensor data obtained during gait has potentials to be developed for practical use. Different machine learning techniques involving larger data set should be warranted for future research and development.
        4,000원
        7.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Road surface conditions are vital to traffic safety, management, and operation. To ensure traffic operation and safety during periods of snow and ice during the winter, each local government allocates considerable resources for monitoring that rely on field-oriented manual work. Therefore, a smart monitoring and management system for autonomous snow removal that can rapidly respond to unexpected abrupt heavy snow and black ice in winter must be developed. This study addresses a smart technology for automatically monitoring and detecting road surface conditions in an experimental environment using convolutional neural networks based on a CCTV camera and infrared (IR) sensor data. METHODS : The proposed approach comprises three steps: obtaining CCTV videos and IR sensor data, processing the dataset acquired to apply deep learning based on convolutional neural networks, and training the learning model and validating it. The first step involves a large dataset comprising 12,626 images extracted from the acquired CCTV videos and the synchronized surface temperature data from the IR sensor. In the second step, image frames are extracted from the videos, and only foreground target images are extracted during preprocessing. Hence, only the area (each image measuring 500 × 500) of the asphalt road surface corresponding to the road surface is applied to construct an ideal dataset. In addition, the IR thermometer sensor data stored in the logger are used to calculate the road surface temperatures corresponding to the image acquisition time. The images are classified into three categories, i.e., normal, snow, and black-ice, to construct a training dataset. Under normal conditions, the images include dry and wet road conditions. In the final step, the learning process is conducted using the acquired dataset for deep learning and verification. The dataset contains 10,100 (80%) data points for deep learning and 2,526 (20%) points for verification. RESULTS : To evaluate the proposed approach, the loss, accuracy, and confusion matrix of the addressed model are calculated. The model loss refers to the loss caused by the estimated error of the model, where 0.0479 and 0.0401 are indicated in the learning and verification stages, respectively. Meanwhile, the accuracies are 97.82% and 98.00%, respectively. Based on various tests that involve adjusting the learning parameters, an optimized model is derived by generalizing the characteristics of the input image, and errors such as overfitting are resolved. This experiment shows that this approach can be used for snow and black-ice detections on roads. CONCLUSIONS : The approach introduced herein is feasible in road environments, such as actual tunnel entrances. It does not necessitate expensive imported equipment, as general CCTV cameras can be applied to general roads, and low-cost IR temperature sensors can be used to provide efficiency and high accuracy in road sections such as national roads and highways. It is envisaged that the developed system will be applied to in situ conditions on roads.
        4,000원
        8.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        사회기반 시설물의 노후화에 대응해 이상 징후를 파악하고 유지보수를 위한 최적의 의사결정을 내리기 위해선 디지털 기반 SOC 시설물 유지관리 시스템의 개발이 필수적인데, 디지털 SOC 시스템은 장기간 구조물 계측을 위한 IoT 센서 시스템과 축적 데이터 처 리를 위한 클라우드 컴퓨팅 기술을 요구한다. 본 연구에서는 구조물의 다물리량을 장기간 측정할 수 있는 IoT센서와 클라우드 컴퓨팅 을 위한 서버 시스템을 개발하였다. 개발 IoT센서는 총 3축 가속도 및 3채널의 변형률 측정이 가능하고 24비트의 높은 해상도로 정밀 한 데이터 수집을 수행한다. 또한 저전력 LTE-CAT M1 통신을 통해 데이터를 실시간으로 서버에 전송하여 별도의 중계기가 필요 없 는 장점이 있다. 개발된 클라우드 서버는 센서로부터 다물리량 데이터를 수신하고 가속도, 변형률 기반 변위 융합 알고리즘을 내장하 여 센서에서의 연산 없이 고성능 연산을 수행한다. 제안 방법의 검증은 2개소의 실제 교량에서 변위계와의 계측 결과 비교, 장기간 운 영 테스트를 통해 이뤄졌다.
        4,000원
        9.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The LBS(Location Based Service) technology plays an important role in reducing wastes of time, losses of human lives and economic losses by detecting the user's location in order by suggesting the optimal evacuation route of the users in case of safety accidents. We developed an algorithm to estimate indoor location, movement path and indoor location changes of smart phone users based on the built-in sensors of smartphones and the dead-reckoning algorithm for pedestrians without a connection with smart devices such as Wi-Fi and Bluetooth. Furthermore, seven different indoor movement scenarios were selected to measure the performance of this algorithm and the accuracy of the indoor location estimation was measured by comparing the actual movement route and the algorithm results of the experimenter(pedestrian) who performed the indoor movement. The experimental result showed that this algorithm had an average accuracy of 95.0%.
        4,000원
        10.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Creating avatar animations are tedious and time-consuming task since the desired avatar poses should be specified for each of a large number of keyframes. This paper proposes a fast and handy method to create game character animation contents using the motion data captured from the Kinect sensor. A Kinect sensor captures and saves the human motion. The Kinect sensor provides the motion information in a simple form of coordinates of joint positions. Using the captured motion data we determine the set of bone transforms that makes up the human skeletal animation data. The animation data is utilized to determine the position of all the bones at the current time in the animation. For experimental purpose we create a simple avatar character. We express the character model by the MD5 format, in which the mesh data and animation data are separated. A set of twenty joint positions reflect a snapshot of the character pose. The sets are used to evaluate the bone transform matrices and construct our skeletal animation scheme. We verified our method by appling the captured Kinect motion data to character animation. Our approach provides an easy method for creating avatar animations.
        4,000원
        11.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Monitoring autocorrelated processes is prevalent in recent manufacturing environments. As a proactive control for manufacturing processes is emphasized especially in the semiconductor industry, it is natural to monitor real-time status of equipment throug
        4,000원
        12.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        도로기하구조정보는 도로의 안전성평가 및 도로의 유지관리를 위한 필수적인 요소이다. 본 연구에서는 GPS(Global Positioning System)/INS(Inertial Navigation System)센서가 탑재된 조사차량을 이용하여 기하구조정보를 수집하였으며, 수집된 차량의 자세정보 중 평면선형과 관련된 Roll, Heading 자료를 이용하여 직선, 원곡선, 완화곡선을 구분하는 알고리즘을 개발하였다. 본 연구에서는 평면선형 인식 이전에 전처리 과정으로 이동평균법을 통하여 자료를 평활화함으로써 원시자료의 이상치를 제거하여 평면선형 인식의 신뢰성을 제고하였다. 유전알고리즘(GA, Genetic Algorithm)을 이용하여 분류정확도(CCR, Correct Classification Rate)를 최대로 하는 알고리즘 파라미터를 설정한 결과 100%의 분류정확도를 보였다. 설정된 파라미터를 이용하여 고속도로와 국도 주행자료를 이용하여 알고리즘을 평가한 결과 90.48%와 88.24%의 분류정확도를 보여, 제안된 평면선형인식 알고리즘은 현장에서 적용 시 높은 신뢰도를 가지는 정보를 제공 가능한 것으로 분석되었다. 본 연구에서 개발한 평면선형인식 알고리즘은 조사차량에 GPS/INS센서의 소프트웨어로 탑재되어 도로 및 교통기술자에게 도로기하구조정보를 보다 용이하게 수집하고 분석할 수 있는 환경을 제공하는데 기여할 것으로 기대된다.
        4,200원
        14.
        2019.10 서비스 종료(열람 제한)
        최근 한반도 지진 발생 회수, 규모 증대 및 전과 다른 내륙에서 발생 등, 외적으로는 지진 하중의 위험성이 증가하고 있으며, 이와 더불어, 국내 사회기반시설물의 노후화에 따른 내적인 취약성 역시 가중 되고 있다. 지진 발생 시 긴급 대처와 유연한 대책 마련을 위한 과학적이고 합리적인 안전성 평가 기술은 시설물 자체 손상을 넘어 붕괴 시 많은 2차 피해를 야기할 수 있는 대표적인 사회기반시설인 댐 저수지 및 교량에 있어 매우 미진한 상태이다. 또한, 중요시설물의 관리 주체는 시설물별 가속도 관측을 수행하고 있으나, 설치된 장비의 성능 및 비용을 고려시 상대적 활용도가 매우 낮은 실정으로, 이러한 활용도를 제고하는 기술개발이 요구되는 상항이다.
        15.
        2016.05 KCI 등재 서비스 종료(열람 제한)
        사회기반시설물의 안전성을 효과적으로 평가하고 모니터링하기 위해 무선 스마트 센서가 개발되어 전 세계적으로 연구가 진행되 고 있다. 무선 스마트 센서는 통상 계측 및 임베디드 데이터 연산, 무선 통신이 가능한 공통점을 갖고 있어 기존의 유선 기반 센서가 가진 단점을 극복할 수 있을 것으로 기대되고 있다. 그러나 구조물의 장기 모니터링의 경우 내구성이 충분하지 못해 발생하는 센서 고장이나, 환경적 이유 로 인한 무선 통신이 불안정할 경우 계측 데이터를 가져올 수 없는 문제가 발생할 수 있다. 본 연구에서는 무선 스마트 센서 기반의 네트워크에 서 이와 같은 문제로 센서 노드에 무선 통신으로 접근할 수 없는 경우를 대처하기 위해, 칼만 필터 기반의 데이터 복구를 수행하여 무선 스마트 센서 네트워크의 신뢰성을 향상시키는 기법을 제안한다. 본 논문에서는 무선 스마트 센서의 연산 기능을 활용하여 네트워크 내에서 계측된 가 속도 데이터를 바탕으로 유실된 센서의 가속도 계측 데이터를 추정한다. 개발된 무선 스마트 센서 네트워크 시스템의 성능을 확인하기 위해 단 순보 구조에서 실험을 수행하여 추정된 가속도 응답과 계측 값을 비교하였다.
        16.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS , UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.
        17.
        2014.05 KCI 등재 서비스 종료(열람 제한)
        Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.
        18.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        최근 초고층 및 초장대와 같은 대형 구조물들이 시공되고 있으며, 이에 대한 구조물 건전성 모니터링 기술들이 연구되고 있다. 하지만 기존의 기술들은 계측 센서의 관리와 센서로부터 계측된 데이터에 효율적으로 access하지 못하고 있다. 본 논문에서는 구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터 시각화 기술을 소개한다. 모바일 디바이스에 내장된 GPS를 통하여 센서와 사용자 간의 거리를 파악하게 된다. 뿐만 아니라, 센서로부터 계측된 데이터는 위치정보시스템 서버에 저장되며, RSS방식을 통해 전송되어 사용자가 모바일 디바이스를 통해 쉽게 계측 데이터를 가시화 할 수 있게 된다. 이 기술을 이용하여 사용자는 센서의 위치인식을 통해 계측센서를 관리하고, 계측 데이터를 시각화하여 시간과 공간에 제약 없이 구조물의 건전성을 모니터링 할 수 있게 된다.
        19.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        댐에는 다양한 계측기들이 설치되어 있으며, 계측되는 데이터는 댐의 유지관리 및 안전을 위해 사용된다. 따라서 신뢰성 있는 계측결과들의 획득이 중요하다. 본 논문에서는 댐체 매설 계측기 (또는 계측데이터)의 신뢰성을 평가할 수 있는 수정된 상관함수를 이용한 새로운 데이터 처리 방법을 제안하였다. 제안된 방법은 인공 계측 데이터와 실제 댐에서 수행된 계측 데이터에 대해 적용 검토 하였으며, 이를 통해 제안된 방법의 타당성을 확인하였다.
        20.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non‐contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.
        1 2