이수식 쉴드 TBM 공법에서 발생하는 부산물인 필터케이크를 유동성 채움재로의 재활용 가능성을 평가하기 위해 다양한 기초 실험을 수행하였다. 필터케이크를 굵은골재 및 잔골재와 혼합하여, 필터케이크의 함량 비율을 증가시키면서 세 가 지 배합(Case 1, Case 2, Case 3)을 구성하였다. 강도 발현을 위한 바인더로는 보통 포틀랜드 시멘트를 사용하였으며, 물- 시멘트비(w/c)를 변화시켜 플로우 시험, 블리딩 시험, 압축강도 시험을 통해 유동성 채움재로서의 가능성을 평가하였다. 시험 결과, 필터케이크 함량이 증가할수록 혼합물의 유동성은 저하되었으며, 이를 보완하기 위해 혼합수의 양을 증가시 키며 적정한 범위의 유동성을 확보하도록 하였으나, 혼합수의 양이 많아질수록 압축강도가 크게 감소하는 경향을 보였 다. 특히, 필터케이크 함량이 가장 높은 Case 3에서는 이러한 현상이 두드러지게 나타났으며, 반면 필터케이크 함량이 적 은 Case 1에서는 상대적으로 높은 강도가 발현되었다. 또한, 필터케이크 함량이 적을수록 혼합물의 유동성은 혼합수량에 민감하게 변화하였다. 블리딩은 필터케이크의 혼합 비율에 영향을 받았으며, 필터케이크 함량이 가장 높은 Case 3에서 블리딩이 가장 적게 발생하였다. 이는 필터케이크의 높은 수분 흡수율이 블리딩 감소에 영향을 미친 것으로 판단된다. 즉, 유동성, 강도, 블리딩 사이의 균형을 맞추기 위한 적절한 배합비 설정을 통해 TBM 공법 부산물인 필터케이크는 유 동성 채움재로 재활용 가능성이 높을 것으로 평가하였다.
본 연구는 도로터널, 철도터널, 지하철, 전력구 등 각종 터널 시공을 위한 TBM(Tunnel Boring Machine) 기술의 시공성 향상을 위한 연속굴착형 TBM 장비와 나선형 세그먼트 통합 시공기술 개발 및 실증과 관련된 것으로 핵심모듈인 추진잭, 세그먼트 이렉터의 선제적인 유지관리를 통해 다운타임 을 최소화하고 굴진율을 안정적으로 확보하기 위한 연속굴착형 TBM 핵심모듈의 유지관리 및 장애대 응 기술에 대한 연구를 수행하였으며, 굴착환경과 연속굴착 운영특성을 고려한 시공 및 장비 운용 절 차를 정의하였다.
Wolsong unit 1, the first PHWR (Pressurized Heavy Water Reactor) in Korea, was permanent shut down in 2019. In Korea, according to the Nuclear Safety Act, the FDP (Final Decommissioning Plan) must be submitted within 5 years of permanent shutdown. According to NSSC Notice, the types, volumes, and radioactivity of solid radioactive wastes should be included in FDP chapter 9, Radioactive Waste Management, Therefore, in this study, activation assessment and waste classification of the End shield, which is a major activation component, were conducted. MCNP and ORIGEN-S computer codes were used for the activation assessment of the End shield. Radioactive waste levels were classified according to the cooling period of 0 to 20 years in consideration of the actual start of decommissioning. The End shield consists of Lattice tube, Shielding ball, Sleeve insert, Calandria tube shielding sleeve, and Embedment Ring. Among the components composed for each fuel channel, the neutron flux was calculated for the components whose level was not predicted by preliminary activation assessment, by dividing them into three channel regions: central channel, inter channel, and outer channel. In the case of the shielding ball, the neutron flux was calculated in the area up to 10 cm close to the core and other parts to check the decrease in neutron flux with the distance from the core. The neutron flux calculations showed that the highest neutron flux was calculated at the Sleeve insert, the component closest to the fuel channel. It was found that the neutron flux decreased by about 1/10 to 1/20 as the distance from the core increased by 20 cm. The outer channel was found to have about 30% of the neutron flux of the center channel. It was found that no change in radioactive waste level due to decay occurred during the 0 to 20 years cooling period. In this study, activation assessment and waste classification of End Shield in Wolsong unit 1 was conducted. The results of this study can be used as a basis for the preparation of the FDP for the Wolsong unit 1.
As awareness about the danger of radon in indoor air has increased, various studies have been conducted to reduce the source of radon. This study was performed to investigate the effect of radon mitigation technology in a railway tunnel. Radon barrier paint and radon shield membrane developed to reduce the concentration of radon in soil and construction material were applied in the tunnel. The tunnel was divided into three sections, A, B, and C, and radon barrier paint, a buffer section, and radon shield membrane were applied, respectively. After securing a sealing screen to the floor and division of each section, radon concentrations were measured and compared before and after each product was applied, and statistical significance was confirmed through the Wilcoxon signed rank test. Measurement was performed with the In-Situ Method and Closed Chamber Method. Radon concentration measured by the in-situ method changed in A section to 124.1 Bq/m2/day from 614.1 Bq/m2/day (79.8%, z=-2.521, p<0.05), in B section to 416.2 Bq/m2/day from 467.1 Bq/m2/day (10.9%, z=-0.980, p=0.327), and in C section to 47.3 Bq/m2/day from 645.6 Bq/m2/day (92.7%, z=-2.521, p<0.05). Radon concentration measured by the closed chamber method recorded a decrease in A section to 88.8 Bq/m3 from 364.2 Bq/m3 (75.6%, z=-2.201, p<0.05), in B section to 471.8 Bq/m3 from 583.3 Bq/m3 (19.1%, z=-0.700, p=0.484), and in C section to 115.9 Bq/m3 from 718.8 Bq/m3 (83.9%, z=-2.521, p<0.05). In addition to soil, it is very important to mitigate radon from building materials with a high contribution rate of radon in order to manage radon by source. Due to the spatial characteristics of railway tunnels, soil and wall concrete structures are exposed as they are, so it is considered that radon mitigation actions are required utilizing verified methods with high mitigation efficiency.
고온기 시설멜론 재배 시 저비용 고효율의 개발하기 위하여 차광 자재별 이용 효과를 구명하고자 수행하였다. 차광처리 에 따른 평균온도는 무차광이 36.6℃, 차광도포제는 34.5℃, 백색차광망은 34℃로 조사되었다. 도포제 살포 직후에 투광률이 무차광에 비해서 차광 도포제 처리구는 69%, 백색차광망 처리구는 75% 이었으나, 40일 및 80일 후 차광 도포제 처리구의 투광률이 각각 92% 및 98%로 높아져 처리된 차광도 포제가 서서히 제거되는 것을 알 수 있었으며, 백색차광망 처 리구는 시간의 경과에 따른 투광률의 변화가 거의 없었다. 생육에 있어 엽수는 처리 간에 차이가 없었고, 초장은 무차광에 비해 백색차광망과 차광도포제 처리구에서 높게 나타났다. 엽중, 생체중, 건물중의 경우 차광 처리구에 비해서 무차광에 서 정식 42일 후에는 더 무거운 것으로 나타났다. 총 상품수량 은 무차광에 비해서 백색차광망과 차광도포제가 각각 6% 및 5% 증수되었다. 따라서 고온기 간편하게 온도를 낮출수 있는 방법으로 차광도포제는 효과적이나 서서히 제거되기 때문에 재배 시기를 고려해서 사용하는 것이 바람직하다고 생각되었다.
Thermal and wind panels are installed on offshore oil and gas platforms to protect personnel, equipment and structures. However, in general, panels are designed and manufactured through trial and error based on performance tests. For this reason, it is difficult to develop and design a heat sink in the Korean shipbuilding and offshore equipment industry due to the lack of performance test data and limited experience. In this study, the experimental results performed to verify the performance of the thermal and wind panels were analyzed, and the characteristics and performance characteristics of the thermal and wind panels were investigated. The conclusions drawn from this study will be useful in terms of the design and development of shielding.
This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g−1 60Co and 2.63×105 Bq·g−1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr−1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr−1) as per global standards.
This study was designed to examine the performance of an aspirated radiation shield(ARS), which was made at the investigator's lab and characterized by relatively easier making and lower costs based on survey data and reports on errors in its measurements of temperature and relative humidity. The findings were summarized as follows: the ARS and the Jinju weather station made measurements and recorded the range of maximum, average, and minimum temperature at 2.0~34.1oC, -6.1~22.2oC, –14.0~15.1oC and 0.4~31.5oC, -5.8~22.0oC, -14.1~16.3oC, respectively. There were no big differences in temperature measurements between the two institutions except that the lowest and highest point of maximum temperature was higher on the campus by 1.6oC and 2.6oC, respectively. The measurements of ARS were tested against those of a standard thermometer. The results show that the temperature measured by ARS was lower by –2.0oC or higher by 1.8oC than the temperature measured by a standard thermometer. The analysis results of its correlations with a standard thermometer reveal that the coefficient of determination was 0.99. Temperature was compared between fans and no fans, and the results show that maximum, average, and minimum temperature was higher overall with no fans by 0.5~7.6oC, 0.3~4.6oC and 0.5~3.9oC, respectively. The daily average relative humidity measurements were compared between ARS and the weather station of Jinju, and the results show that the measurements of ARS were a little bit higher than those of the Jinju weather station. The measurements on June 27, July 26 and 29, and August 20 were relatively higher by 5.7%, 5.2%, 9.1%, and 5.8%, respectively, but differences in the monthly average between the two institutions were trivial at 2.0~3.0%. Relative humidity was in the range of –3.98~+7.78% overall based on measurements with ARS and Assman's psychometer. The study analyzed correlations in relative humidity between the measurements of the Jinju weather station and those of Assman's psychometer and found high correlations between them with the coefficient of determination at 0.94 and 0.97, respectively.
2017년 6월에 영구정지 된 고리 1호기의 해체는 한국의 상업 원전에 대한 첫 해체 사례가 될 것이다. 해체 과정 중에 발생하 는 폐기물에 대한 처분은 전체 해체 비용의 많은 부분을 차지한다. 따라서 방사화 및 오염된 콘크리트 구조물은 적절한 해체 전략을 수립하여 경제적이고 안전하게 해체되어야 한다. 본 논문에서는 생물학적 차폐체에 대한 최적화된 해체 및 처분 시 나리오를 연구하였다. 해체사례, 폐기물 처분 규정 및 처리 기술을 분석하였다. 그리고 생물학적 차폐체 제거 과정의 폐기물 발생량을 최소화하기 위해서, 최적 해체 시나리오를 제시하였고 폐기물 처분 방안을 도출하였다.
When performing Chest x-ray examination to pregnant woman, normally we shield back side of abdomen. In this situation, scattered rays made by equipment and surrounding structure can enter front side of abdomen. Therefore, in this study, we evaluate suitability of abdomen shield especially to pregnant woman. In case of One shielding material placed back of abdomen, the measured value is 0.676±0.19 uSv/hr. Two shielding material is 0.764±0.04 uSv/hr. Three is 0.685±0.16 uSv/hr. The exposure dose inferred in this study does not excess annual effective dose limit. But It is not mean absolute safety. So we have to minimize occurrence of stochastic effect of radiosensitivity by shielding front side of abdomen of pregnant woman in clinic.
This study is about comparison of thermal and flow characteristics on the wind & radiant heat shield with STS mesh type screen for offshore plant. Numerical analysis was conducted to find transmission coefficient in the mesh and then analyse the flow characteristics about wind & radiant heat shield. The experiment method of solar radiation has been used as thermal radiation source to get the performance of radiant heat shield measurement. The sensor radiation device has been used to measure the reduction of solar radiation with various size of cells and at a distance of 0.5m and 1m from the cold face of the wind & radiant heat shield. The present study show reduction in radiation heat flux as various distance from the cold face of the radiant heat shield. Experimental results are presented for different type of mesh and distance of measurement.
Generally, the characteristics of battery cover has been effected on the expected life span and durability of battery. In this study, the heat shield performance of battery cover was investigated experimentally. Also, the cooling effect of battery for each conditions(material and structral conditions of battery cover) was investigated. As the results, the heat shield performance for heating case is excellent in the case of thickness increasing of battery cover. The characteristics for heating case is more effected on the thermal damage than that of cooling case.