검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m−2, prismatic direction: 1.43 ~ 3.02 J·m−2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.
        4,000원
        2.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co- 2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless- WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 μm, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.
        4,000원
        3.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructure and mechanical properties of WC-3wt% Co cemented carbides, fabricated by a sparkplasma sintering (SPS) process, were investigated in this study. The WC-3wt%Co powders were sintered at900~1100oC for 5min under 40MPa in high vacuum. The density and hardness were increased as the sinteringtemperature increased. WC-3wt%Co compacts with a relative density of 97.1% were successfully fabricated at1100oC. The fracture toughness and hardness of a compact sintered at 1100oC were 21.6MPa·m1/2 and4279Hv, respectively.
        4,000원
        4.
        2006.09 구독 인증기관·개인회원 무료
        WC-10Co-0.8VC nanocrystalline powders were sintered by spark plasma sintering (SPS) and hot press sintering (HPS), and the microstructure and properties were compared. Results show that dense WC-10Co-0.8VC can be obtained by SPS in several minutes when the sintering temperature is >1200℃. Sintered at a temperature of 1300℃, the sample prepared by SPS for 3 minutes has higher density, finer grains and better properties than that prepared by HPS for 60 minutes. SPS can be used to prepare nanocrystalline WC-10Co-0.8VC with improved properties when suitable sintering parametesr are chosen.
        5.
        2006.04 구독 인증기관·개인회원 무료
        In this study, the diffusion behaviors of C and Co in liquid phase sintering of WC-Co system were investigated whether these two components diffused in the same direction in case of having opposite gradient each other with not being phase. The green compacts with controlled compositions in not being of phase and gradient composition which one is WC-5Co-1.2%C, the other is WC-XCo-0.2%C (where X = 5, 10, 15, 20, 25) were sintered at and and then the diffusion behaviors of C and Co were investigated by analyses of compositional change, also determined for microstructure and microhardness. Also, same testing was carried out on the specimens with dual layers sintered in upright and reverse positions to evaluate the effect of gravity on the diffusion in liquid Co. From the results of this study, we can find the fact that the direction of diffusion for C and Co in WC-Co system during liquid phase sintering was different and the effect of gravity for the liquid was insignificant. Also other physical properties were changed on the diffusion of elements.
        6.
        2006.04 구독 인증기관·개인회원 무료
        A solid stage sinterizacion model of the WC-Co is applied on this work. These results are compaired with the experimental data obtained for nanometric and micrometric sinter powder in an electric furnace and micrometric in a plasma reactor (using Abnormal Glow Discharge AGD). The correlations obtained allow the prediction of the sintering behavior in AGD for nanometric powder. The activation of the solid state sintering is shown with the decraease of the WC size and the use of AGD
        7.
        2006.04 구독 인증기관·개인회원 무료
        새로운 급속소결방법인 고주파유도가열 소결법과 펄스전류활성 소결법을 이용하여 습식 볼밀링으로 혼합한 WC-8wt.%Co분말에 60MPa의 압력과 90%의 고주파출력 또는 2800A의 필스전류를 가하여 상대밀도가 98.6% 이상인 초경재료를 2분이내의 짧은 시간에 제조하였다. 초기의 WC분말의 입도가 미세해짐에 따라 고주파유도가열 소결법과 펄스전류활성 소결법 모두 소결시간이 단축되는 경향을 보였으며 그 소결체의 결정립 크기도 감소하였다. 고주파유도가열 소결
        11.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        WC-6wt%Co hard metal powders were sintered by a 2.45 GHz multimode microwave applicator in Ar atmosphere. Microwave sintering of WC-6wt%Co powder lowered the sintering temperature and shortened the processing time in less than two hours than by a conventional method. Microstructures of the sintered specimen were studied with scanning electron microscope (SEM) and no abnormal grain growth was observed. Mechanical properties were similar to the values of the specimens sintered by a conventional method. Specimen sintered at 135 for 30 minutes ,hewed 99%, 20.5 GPa and 8.1 MPa of theoretical density, hardness and fracture strength, respectively.
        4,000원
        13.
        2003.06 구독 인증기관·개인회원 무료
        1) Using a developed high-frequency induction heated sintering method, the rapid densification of WC-Co hard materials was accomplished using ultra fine powders with 260 nm size within 1 minute. 2) The relative density of the composite was 99.5% for the applide pressure of 60MPa and the induced current for 90% output of total capacity. 3) The grain size of WC-Co hard materials is about 260nm and the average thickness of the binder phase determined is about 11nm. The fracture toughness and the hardness of this work 12 , respectively. 4) Using pressureless sintering, we produced dense WC-Co hard materials with a relative density of 97% without applying pressure.
        14.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.
        4,000원
        17.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of carbon content on the shape of WC grains dispersed in the Co-rich matrix during liquid phase sintering of WC-35%Co hard metals has been determined. The shape of WC grains was observed using SEM stereography after removing cobalt matrix with boiling hydrochloric acid solution. The WC grains changed from hexagonal to trigonal prism as the carbon content increased in the two-phase region of(WC + - Co), while the morphology of WC grains changed from trigonal to hexagonal shape as the carbon content decreased. The morphology of WC grains changes reversibly along with carbon loss or carbon pick-up. Morphology change of WC grains is attributed to crystal structure of WC, which has an asymmetric array of carbon atoms. There are two types of prismatic planes having different numbers of broken W-C bonds in WC grains. It is scrutinized that as the carbon content increases, the high energy prism planes grow fast and the crystals change from hexagonal to trigonal shape. On the other hand, when the carbon content decreases, the high energy prism planes are dissolved accompanying split of (100) plane into (101) and (101) planes.
        4,000원
        20.
        1996.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure evolution during sintering of a compact being composed of three layers of (WC-15%Co)/Fe powder mixture with different Fe contents has been observed. The Fe contents in the respective (WC-15%Co)/Fe layers were varied by 20%. 50%, and 90% in sequence by volume from a top layer to a bot- tom layer. The sintering temperatures and times were varied from 110 to 125 and from 1 h to 4 h, The compact layer was not densified below 120 in 4 h. Appropriate sintering temperature and time conditions for making a multi-layered hard metal compact were determined as 125 and 3 h, respectively.
        4,000원
        1 2