The demand for secondary batteries is increasing rapidly with the popularization of electric vehicles and the expansion of wireless electronic devices. However, the most widely used lithium-ion batteries are subject to frequent fire incidents, limiting market growth. To avoid flammability, solid electrolyte-based systems are gaining attention for next-generation lithium-ion batteries. However, challenges such as limitations in ionic conductivity and high manufacturing costs require further research and development. In this study, we aim to identify a new nitrogen-based solid electrolyte material that has not yet been widely explored. We propose a methodology for selecting the final material through high-throughput screening (HTS), detailing the methods used for material selection and performance evaluation. In addition, we present ab initio molecular dynamics (AIMD) calculations and results for nitrogen-substituted materials with carbon and oxygen replacements, including Arrhenius plots, activation energy, and the predicted conductivity at 300K for the material with the highest Li-ion conductivity. While the performance does not yet surpass the ionic conductivity and activity of conventional solid-state electrolytes, our results provide a systematic framework for exploring and screening new solid electrolyte materials. This methodology can also be applied to the exploration of different battery materials and is expected to contribute significantly to the innovation of next-generation energy storage technologies.
고체전해질은 높은 에너지 밀도와 안전성을 갖춘 차세대 리튬이온전지에 꼭 필요한 핵심 요소다. 이러한 고체전 해질의 제작을 위해서 기존 고체전해질의 낮은 이온전도도와 높은 계면저항 문제를 해결해야 한다. 본 연구에서는 강화된 이 온 전도성과 계면 안정성을 지닌 PVDF-HFP 고분자에 분산된 Li7La3Zr2O12 (LLZO) 나노와이어 복합체를 기반으로 하는 새 로운 전해질(PVDF-HFP/LLZO/SN, PHLS membrane)을 제안한다. PHLS에 용매 열압착(Sovlent heat press, SHP)을 통해 계 면 저항과 내부 공극이 감소된 PHLS-(SHP)는 30°C에서 2.06 × 10-4 S/cm의 높은 이온 전도도, 4.5 V (vs. Li/Li+)의 넓은 전 기화학적 전위 창, 리튬 금속과 전해질 사이의 안정된 계면 안정성을 나타냈다. 0.2 mA/cm2에서 수행된 Li 대칭 셀을 사용한 전기화학적 테스트에서 150 시간 이상 안정성을 유지하는 것으로 확인되었으며, 이는 당사의 복합 기반 고체 전해질을 활용 하여 전기화학적 성능이 향상되었음을 시사한다.
In this study, ester co-solvents and fluoroethylene carbonate (FEC) were used as low-temperature electrolyte additives to improve the formation of the solid electrolyte interface (SEI) on graphite anodes in lithium-ion batteries (LIBs). Four ester co-solvents, namely methyl acetate (MA), ethyl acetate, methyl propionate, and ethyl propionate, were mixed with 1.0 M LiPF6 ethylene carbonate:diethyl carbonate:dimethyl carbonate (1:1:1 by vol%) as the base electrolyte (BE). Different concentrations were used to compare the electrochemical performance of the LiCoO2/ graphite full cells. Among various ester co-solvents, the cell employing BE mixed with 30 vol% MA (BE/MA30) achieved the highest discharge capacity at − 20 °C. In contrast, mixing esters with low-molecular-weight degraded the cell performance owing to the unstable SEI formation on the graphite anodes. Therefore, FEC was added to BE/MA30 (BE/MA30-FEC5) to form a stable SEI layer on the graphite anode surface. The LiCoO2/ graphite cell using BE/MA30-FEC5 exhibited an excellent capacity of 127.3 mAh g− 1 at − 20 °C with a capacity retention of 80.6% after 100 cycles owing to the synergistic effect of MA and formation of a stable and uniform inorganic SEI layer by FEC decomposition reaction. The low-temperature electrolyte designed in this study may provide new guidelines for resolving low-temperature issues related to LIBs, graphite anodes, and SEI layers.
This study investigates the thermal expansion characteristics of hydroxyl-terminated polybutadiene(HTPB) based solid propellants, focusing on batch-to-batch variability and accelerated aging effects. Coefficient of thermal expansion(CTE) measurements were conducted using thermomechanical analyzer(TMA) on samples from different manufacturing batches and specimens aged at various temperatures for different durations. Results indicate variations in CTE values between batches, highlighting the significance of manufacturing process control. Accelerated aging experiments reveal minimal systematic changes in CTE, suggesting stability of thermal expansion properties under short-term thermal stress. The overall distribution of CTE values shows concentration within a specific range, indicating consistency in thermal expansion characteristics. These findings provide insights into the thermal behavior of HTPB-based solid propellants, contributing to improved missile design and lifecycle prediction models.
This paper reports an enhanced strategy for improving the mechanical flexibility and ionic kinetic properties of a double network hydrogel based on Co2+- coordination assistance. The modified double-network hydrogel was obtained by using acrylic acid and N, N-dimethylacrylamide as monomers, adding cross-linking agents and 3D nitrogen-doped graphenes. The tensile fracture rate of the modified hydrogel was 1925% and its tensile strength was 1696 kPa. In addition, the hydrogel exhibited excellent ionic dynamics, and its application to an all-solid-state supercapacitor was able to achieve a specific capacitance of up to 182.8 F g− 1. The supercapacitor exhibited an energy density of 34.2 Wh kg− 1, even when operating at a power density of 5 kW kg− 1, highlighting its significant potential for practical applications.
Paecilomyces tenuipes (P. tenuipes) is a fungus cultivated artificially by South Korean researchers, utilizing rice bran as its substrate. The increased demand for this fungus has not been met with successful cultivation methods for fruiting body production in natural environments. Therefore, we tested the effect on the growth of P. tenuipes using a Solid media based on pests. In this results, the Solid media based on M.alternatus was effective in increasing the growth of P. tenuipes and the content of cordycepin. Moreover, we confirmed the conditions for manufacturing a Solid media based on M.alternatus for P. tenuipes growth. We suggested that the growth-promoting compounds offers valuable insights for optimizing fungal cultivation conditions, thereby enhancing productivity and contributing to a broader understanding of fungal physiology in varying nutritional environments.
전고체 전지는 전기 자동차의 안정성을 향상시키기 위해 기존의 리튬 이온 전지를 대체할 주요 후보로 간주되고 있 습니다. 그러나 전고체 전지에 사용되는 황화물계 고체 전해질은 산화 환원 안정성이 부족하며 양극복합전극과 표면 에서 부반응을 이르켜 문제를 야기시킵니다. 때문에 양극 표면 코팅법이 제안되었고 이는 충방전 사이클 안정성 및 속도 특성의 개선에 유용한 효과를 나타낼 수 있습니다. 본 논문에서는 결정학적 분석을 통하여 신규 Li-Zr-O 조성 탐색을 하였고, 다양한 양극 소재 코팅소재 후보군 중 리튬 이온 전도체인 Li6Zr2O7 구조가 매우 유망하다는 연구 결 과를 확인했습니다. 본 논문은 기존에 사용되는 LiNbO3, Li4Ti5O12가 아닌 새로운 다양한 구조 및 조성의 양극 코팅 소 재개발에 대한 필요성 및 가능성을 시사합니다.
A solid-phase competition enzyme-linked immunosorbent assay (ELISA), recombinant VP2 (rVP2) protein, and monoclonal antibody (mAb) were developed for the specific and sensitive detection of porcine parvovirus (PPV) antibodies in pig sera. A total of 1,544 sera samples were collected from breeding pig farms located in the Gyeongsangbuk-do Province in the Republic of Korea. The optimal operating conditions of SC-ELISA were as follows. The concentration of rVP2 proteins coated on the wells was 4 μg/mL, the swine sera were diluted 1:2, and the HRP-conjugated PPV VP2 mAb (9A8 clone) was used at 500 ng/mL. These results suggest that the SC-rVP-ELISA assay may be a valuable alternative to the current diagnostic tools used to detect PPV-specific monoclonal antibodies and broadly monitor PPV infections in domestic pigs at different breeding stages.
In this report, we incorporate activated carbon (AC) onto aluminum substrate via doctor blade method to produce an all-solid-state supercapacitor. The electrochemical properties of the all-solid-state supercapacitor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Galvanostatic charge/discharge tests also were carried out to exhibit stability of the AC-based supercapacitor. The impedance and charge/discharge curves of the all-solid-state supercapacitor showed good capacitive behavior after functionalized AC. The highest specific capacitance obtained for the AC-based supercapacitor was 106 F g−1. About 160% of specific capacitance increased after functionalization of the AC, which indicated that modification of the AC by nitric acid was able to introduce functional groups on the AC and improve its electrochemical performances.
Fused Deposition Modeling (FDM), also known as Fused Deposition Modeling (FFF), is the most widely used type of 3D printing at the consumer level. The FDM 3D printer extracts thermoplastic filaments such as ABS (Acrylonitrile Butadiene Styrene) and Polyactive Acid (PLA) through heated nozzles to dissolve the material. It works by applying layers of plastic to build platforms. Various demands for 3D printers increased, and among these demands, there was also a demand for various filament colors. ABS, one of the main filamentous materials for 3D printers, is easy to color in a variety of colors and has been studied to meet the needs of these users. Through quantitative measurements in this work, we confirm that color differences remain depending on the difference in placement on the 3D printer bad. In addition, the temperature of the specimen was measured at the start of 3D printing, during manufacturing, and at the completion of manufacturing, and the inner and central sides remained similar, but the outer sides were 5 degrees lower. These temperature differences accumulate as layers pile up, resulting in differences in weight or color, which in turn meet consumer and producer needs in the 3D printer industry.
고분자를 기반으로 하는 고체 전해질은 수퍼커패시터, 배터리, 센서, 액추에이터 등 다양한 전기화학 소자에 응용이 가능한 소재로써, 기존 고분자 전해질의 낮은 이온전도도를 향상시키기 위해서 다양한 이온성 액체 기반의 고체 전해질에 관한 연구가 활발히 진행 중에 있다. 이온성 액체의 높은 전기적 특성 및 전기화학적, 열적 안정성과 고분자의 우수한 기계적인 강도를 활용한 젤 상태의 고체 전해질인 이온젤은 차세대 웨어러블 및 플렉시블 전자소자에 응용되어 연구되고 있다. 따라서 본 연구에서는 이러한 이온성 액체와 고분자 기반의 고체 전해질을 제조하고 특성을 분석하여 탄소나노복합체 기반의 전극 에 적용하여 다양한 전자소자에 응용이 가능한 이온전도도 및 안정성이 향상된 이온성 액체 기반의 고체 전해질을 개발하고자 한다. 제조된 고체전해질은 전기화학적 임피던스법을 이용하여 이온 전도도를 측정 하여 보았으며 이온성 액체를 첨가하여 제조한 고체전해질의 이온 전도도가 1.26 x 10-1 S/cm 로 확인 되었다. 또한 제조된 고체 전해질을 이용하여 전고체형 수퍼커패시터를 제조하여 전기화학적 특성을 비교 하여 보았으며, 수퍼커패시터의 전기화학적 특성 역시 이온성 액체를 첨가하여 제조된 고체 전해질을 사 용하였을 때 향상된 전기화학적 특성을 나타내었다.
본 연구에서는 “이온젤” 이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol)-H₃PO₄의 고체 전해질에 이온성 액체 BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전고체 전해질과 환원된 그래핀 옥사이드/전도성 고분자 복합재료 기반의 전극 재료를 이용하여 유연성을 갖는 슈퍼커패시터를 제작 하였으며, 유연성에 따른 전기화학적 특성을 분석하여 보았다. 환원된 그래 핀 옥사이드/전도성 고분자 복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성을 유연성에 따라서 측정하기 위해서 프레스로 0.01 kg/cm²의 일정한 압력으로 최대 100회 까지 굽힘 시험 (bending test)을 진행 하였으며, 0~100 회의 굽힘 시험 이후에 순환 전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 유연성 슈퍼커 패시터의 초기 전기용량은 43.9 F/g으로 확인 할 수 있었고, 이 값은 50회, 100회의 굽힘 시험 후에 각각 42.0F/g, 40.1F/g로 감소하는 현상을 확인할 수 있었다. 이러한 결과로 미루어 보아 물리적인 응력이 슈퍼 커패시터의 전기화학적 특성 감소에 영향을 주는 것으로 사료되며 또한, 굽힘 횟수에 따른 슈퍼커패시터의 전기화학적 특성 감소 원인을 확인하기 위해서 굽힘 시험 전과 후의 전극표면을 전자주사 현미경으로 관찰 하여 보았다.
본 연구에서는 titanium nitride (TiN) 나노 섬유와 poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOTPSS) 전도성 고분자로 이루어진 전극과 poly(vinyl alcohol) (PVA) 기반 고분자 전해질 분리막을 이용하여 슈퍼 캐퍼시터를 제조하였다. TiN 나노 섬유의 경우 높은 전기 전도도와 이차원적 구조로 인한 스케폴드 효과를 기대할 수 있다는 점에서 전극 물질로 사용되었다. PEDOT-PSS 전도성 고분자는 수소 이온과 산화-환원 반응을 통해 보다 높은 정전용량을 나타낼 수 있으며 용액상에 분산이 용이해 유무기 복합제를 형성하기에 적합하였다. PVA 기반의 고분자 전해질 분리막은 기존의 액상의 전해질의 문제인 외부 충격에 대한 안정성을 확보할 수 있으며 염으로 사용된 H3PO4의 경우 수소 이온은 빠른 확산으로 인해 캐퍼시터의 충방전 효율에 이점이 있다. 본 연구에서 보고된 PEDOT-PSS/TiN 슈퍼캐퍼시터의 정전용량은 약 75 F/g으로 기존의 탄소기반 캐퍼시터에 비해 큰 폭으로 증가한 값이다.