The adhesive design of a fast steering mirror transmitting a high power laser is one of the important design elements that affect optical aberration of the mirror surface. In this paper, we designed the adhesive part to avoid the high power laser beam of the FSM system. Stiffness and wavefront error are trade-off relationships and an optical design was derived to maintain the wavefront error of the mirror surface at high temperatures while satisfying the bandwidth of the FSM system. For the optimal design of the mirror bonding position, structural analysis was conducted using ANSYS and wavefront error analysis was performed using Zernike polynomial code. Through those analysis, FSM most effective at an angle 60 degrees and a distance of 46mm.
Recently, many countries are performing researchs about weapon systems or communication systems using laser. Because laser weapons are relatively easy to use and can exert powerful energy with high efficiency versus cost. Also laser communication systems has many advantages compared to RF communication systems, such as big data transmission through giga-bit communication, high security and so on. In these systems, one of highly important key components is Fast Steering Mirror(FSM) to control the laser beam precisely and accurately. Therefore, in this paper, we perform static and dynamic analysis to predict performances of Fast Steering Mirror using voice coil actuators. Also we manufacture prototype of FSM on the basis of static and dynamic analysis results, and perform the performance test about four items. As a result, we lay a foundation for research about FSM and laser systems, and expact to contribute improvement of performances of systems using laser.
In this study, the second-order Nomoto’s nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto’s nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.
PURPOSES : The turning movement of vehicles is directly affected by such factors as vehicle length, wheelbase, steering angle, articulated angle, and wheel steering. Therefore, it is necessary to analyze the impact of changes in each factor on the turning of the vehicle. Because a vehicle with a long body, such as an articulated bus, makes a wide turn, this study analyzes the swept path of the driving vehicle considering the specifications of the vehicle.
METHODS : This study was conducted by dividing driving routes into four routes of two-lane four-way roundabouts, and the turning conditions were examined for six types (Type 1–6) that simulated actual articulated bus data. The same vehicle specifications as those of the actual articulated bus were applied to the road design simulation (AutoTURN Pro), and the width of the swept path for the articulated bus was investigated based on the wheel steering control. Using a virtual reference line for dividing the inscribed circle into lanes of the roundabout by 5°, the driving width of the swept path was measured and the angle at which the driving width was largest during driving through the turning intersection was examined. In addition, the changes in the driving width of the swept path according to the wheel steering control under the same wheel turning conditions, as well as the articulated and steering angles, were investigated.
RESULTS : The driving width of the swept path for the vehicle (Type 1) with the front wheel control function being an all-wheel system was less than that of an articulated bus with the largest driving width of 15° after entering the roundabout and 15° before entering the roundabout (Type 2). Furthermore, although the specifications of the vehicles were the same, it was determined that Type 5 was superior to Type 6 after reviewing the driving width in light of changes in the steering and articulated angles.
CONCLUSIONS : The results of this study are expected to contribute to the field of road design considering traffic safety when large vehicles, such as articulated buses, turn on roundabouts or curved road sections.
EPS(Electric Power Steeing) has been a popular system in the automotive industry since 2000 after the technology and safety was validated. The Korean Refrigerated Carts like Hankook Yogurt Coco was developed for the first time in the world. However this carts system and other small tranporting carts has no EPS. Thus the drivers of carts needed a EPS to avoid the burden when steeing a big weighted cart with 750Kgf as many women drivers complain the pain on their shoulders. This paper describes the application of EPS on Korean refrigerated carts with simulation results and experimental data shows the improvement of steering efforts.
Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.
The global trend is the application of heat-treated omission materials to reduce the manufacturing cost of automobile steering parts. Attempts have been made to apply heat-treated omission materials in domestic, but they are delayed due to concerns over rising cold forging process costs. For quantitative prediction of cold forging process cost, fatigue properties of forging die materials were evaluated. Based on this, the die life and cost were predicted quantitatively, and the manufacturing cost reduction of automobile steering parts using heat-treated material was found to be about 11%. Also, various methods to improve die life were additionally presented.
MDPS control has been a difficult problem for the past two decades. Though there are many ways to control steering feeling, the MDPS control logic is still being upgraded or developed for steering feel improvement. A new point of view in MDPS is proposed by evolution logic, which is a new driver friendly improvement based on the analysis of driver’s driving pattern. As a result of the application of evolution logic, this paper shows that drivers behaviour effecting factors among MDPS parameters will efficiently lead to customers’ satisfaction.
The ship steering is a very important factor for safe operation. Recently, the ship is controlled in a space other than the wheelhouse through the wired controller. However, there has been a continuing need to improve the inconvenience of wired systems. In this study, a system to control the steering angle and throttle of ship by RF communication method was developed and applied to actual ship. Since the reliability is secured through the safety evaluation, the wireless steering system improves the convenience and economic efficiency of ship steering.
A steering knuckle for a car is a key part of a corner module and is a functional part connected to steering, suspension, and braking devices. Steering knuckles are used for various types of forging and machining methods such as casting forging, aluminum forging, etc. to perform productivity and quality. Therefore, in this study, we study about the development of the overall design of the steering knuckle in the production and supply of the steering knuckle for the product processing method, quality, assembly inspection, etc. through the modeling and analysis of the steering knuckle.
In the power steering systems used for automobiles, because of its small size and low noise, a balanced type hydraulic vane pump is mainly used as a power source. Therefore it is requested to research on the lubrication characteristics of a oil hydraulic vane pump which is the key part to improve its performance. The performance of a oil hydraulic vane pump is influenced by the lubrication characteristics of the critical sliding components. Thus, lubrication characteristics between the shaft and the journal bearing have to be researched for the design and the performance improvement of a oil hydraulic vane pump. Therefore, in this paper, it is theoretically investigated that the lubrication characteristics between the shaft and the journal bearing of a balanced type oil hydraulic vane pump for power steering systems. The results demonstrate that lubrication characteristics are significantly influenced by the clearance between the shaft and the journal bearing.
The purpose of this study is to improve the durability by solving the crack problem of the steering gearbox bracket welded to the frame assembly. For the exact and effective analysis, we use charac- teristic(fishbone) diagram from the viewpoint of 4M1E. Through this analysis it was identified two kinds of problems, and develop improvement plan for it. Verification tests must be performed to confirm the improvement. So, the test method for steering gearbox bracket improvement was newly established by referring to similar case. As a result of the tests for verification, the stresses at crack point are decreased and the durability was improved about 2.6 times compared with product before improvement.
The purpose of this study is to determine the stiffness of rubber of dynamic damper. This damper system reduces the steering wheel vibration caused by idling oscillation of the engine. Therefore, in order to measure the stiffness of the silicone rubber in the dynamic damper system, the material test of the silicone rubber was carried out. Using the measured stiffness, the FEM model of the dynamic damper system was constructed and the correlation by the experimental data was shown at an error of less than 2%. In addition, the dynamic damper system was simplified to a two-degree-of-freedom spring-mass model and the effect of the stiffness change of the rubber on the natural frequency of the column shaft was analyzed theoretically. As a result, the amplitude of the column shaft was reduced as the stiffness of the silicone rubber was lowered.
The purpose of this study is to design and control position and torque based on the steering controller of power tiller simulator developed by the National Institute of Agricultural Sciences. The tiller simulator selects sensors and motors to detect the motion of the mechanism required for steering, and controls the tiller's steering controller through the PID control method and the PWM control method which can control simultaneously the position and torque. Simulation tests are carried out under various conditions to verify the efficiency of the proposed controller. The power tiller training simulator can be used as a means to prevent agricultural machinery accidents caused by human factors. Through the simulator, the driver can experience a variety of tasks without any risk of collision, the results of his actions, and learn the cause and effect concepts, which can be used for safety education and accident experience.