목적 : 여러 분자량의 polyethylene glycols(PEGs)을 화학적 공유결합으로 하이드로겔 콘택트렌즈 표면에 고정 시켰다. PEG의 도입이 렌즈의 표면 습윤성, 단백질 흡착성, 광투과율 등에 미치는 영향을 PEG의 길이 혹은 PEG 의 적용여부 등에 초점을 맞추어 분석하는데 실험 목적이 있다.
방법 : PEG에 Jones oxidation 반응을 통해 알코올기를 카르복실 작용기로 변형시켰고, 하이드로겔 콘택트렌즈 표면에 화학적으로 결합시켰다. 역상 고성능 크로마토그래피와 단백질 표준검량선을 이용하여 제조된 렌즈들에 흡착된 단백질을 정량하였다.
결과 : PEG가 개질된 하이드로젤 콘택트렌즈는 우수한 광투과율과 표면 습윤성을 보였고 이는 상업적으로 이용가능한 수치이다. 단백질 흡착 실험 결과를 살펴보면, 보단 긴 PEG 사슬이 적용된 하이드로겔 콘택트렌즈는 표면 친수성이 더 우수하기 때문에 단백질 흡착량이 더욱 감소하였다.
결론 : 본 연구에서는 PEG가 표면-개질된 하이드로겔 콘택트렌즈를 제조하고 이들의 물성을 조사하였다. PEG 각 적용된 렌즈는 90% 이상의 광투과율과 개선된 표면 습윤성을 보여주었다. 특히, 보다 긴 PEG2000이 적용된 렌즈에는 PEG가 적용되지 않은 대조군이나 짧은 PEG164가 적용된 렌즈 보다 단백질의 흡착이 크게 감소되었다. PEG가 표면에 적용된 하이드로겔의 제조는 안의료용 바이오소재 뿐만 아니라 단백질-비흡착 기기의 개발에 큰 역할을 할 것으로 기대된다.
The purpose of this study was to optimize the rice protein extracted using a response surface methodology. The experiment was designed based on a CCD (Central Composite Design), and the independent variables were the high pressure (X1, 0-400 MPa) and processing time (X2, 0-10 minutes). The results of the extraction content (Y1), residue content (Y2), and recovery yield (Y3) were fitted to a response surface methodology model (R2= 0.92, 0.92, and 0.93, respectively). Increasing the pressure and processing time has a positive effect on the extraction content (Y1), residue content (Y2), and recovery yield (Y3). Therefore, these high-pressure conditions (independent variables) can significantly affect the improvement in rice protein extraction efficiency. Thus, the optimal conditions of X1 and X2 were 400 MPa and 10 min., respectively. Under these optimal conditions, the predicted values of Y1, Y2, and Y3 were 62.93, 57.53 mg/g, and 91.76%, respectively.
The aim of this study was to evaluate the optimization extrusion variables on quality of textured vegetable protein by using response surface methodology. In this study, 50% soy protein isolate, 40% wheat gluten, and 10% corn starch were blended and 15% of the mixture was substituted with green tea. The moisture content (45, 50, and 55%), barrel temperature (130, 140, and 150oC), and screw speed (100, 150, and 200 rpm) were varied. A Box- Behnken design was used in this experiment. Second order polynomial regression equations were developed to relate the response to extrusion variables as well as to obtain a response surface plot. The independent variables had significant effects on the quality of the products and moisture content was the most significant. The lower moisture content led to the higher integrity index, lower nitrogen solubility index, lower water absorption capacity, higher texture, and higher cutting strength. The optimum conditions were identified as moisture content 47.78%, barrel temperature 150.00oC, and screw speed 196.05 rpm. Incorporation of green tea into protein materials could effectively improve the nutritional value of the product. Understanding these optimized extrusion variables on the product quality was useful for producing textured vegetable protein in the future.
식물 및 동물성 유래 펩타이드 형태의 단백질 가수분해물은 항산화, 고혈압 완화, 면역조절, 진통완화 및 항균작용 등 생리활성이 있는 것으로 알려져 왔다. 본 연구는 연산 오계의 날개육 단백질 로부터 bromelain 프로티아제를 이용하여 펩타이드 형태의 단백질 가수분해 최적공정을 수행하고 생성 물의 특성을 분석하였다. 최적공정은 표면반응 분석법을 이용하여 수행을 하였고 공정의 범위는 반응온 도 40-60oC, 반응 pH 6-8, 효소의 농도 1-3%(w/v)이었다. 오계 날개육의 단백질 최적 효소가수분해 공정조건은 효소 반응온도 48–50oC, 반응 pH 7.0–7.2, 효소의 양은 3%(w/v)에서 결정 되었다. 이때 단 백질 가수분해 수율은 68-69%에 도달하였다. 생산된 대부분 가수분해물의 분자량들은 전형적인 펩타이 드인 분자량 500-1,200 Da로 분포되었다. 생산된 펩타이드 중에 항산화 기능을 보여주는 소수성 아미 노산들 histidine, proline, methionine, cystein, tyrosine, tryptophan, phenylalanine 들이 43.07%을 차 지하였다. 또한 구성아미노산의 함량 glutamic acid가 전체 구성아미노산의 13.6%로 가장 많은 함량을 차지하여 건강 기능 식품소재로서 활용할 가치가 높을 것으로 기대를 한다.
Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. Also proteomics provide potential in the discovery of new sensitive biomarkers for environmental pollution. We utilized SELDI-TOF MS (surface enhanced laser desorption. / ionization time-of-flight mass spectrometry) to analyze the proteomic profile of Heterocypris incongruens exposed to several heavy metals (lead, mercury, copper, cadmium and chromium) and pesticides (emamectin benzoate, endosulfan, cypermethrin, mancozeb and paraquat dichloride). Several highly significant biomarkers were selected to make a model of classification analysis. data sets obtained from H. incongruens exposed to pollutants were investigated for differential protein expression by SELDI-TOF MS and decision tree classification. Decision tree model was developed with training set, and then validated with test set from profiling data of H. incongruens. Machine learning techniques provide a promising approach to process the information from mass spectrometry data. Even thought the identification of protein would be ideal, class discrimination does not need it. In the future, this decision tree model would be validated with various levels of pollutants to apply field samples.
MspTL is the major surface protein of Treponema lecithinolyticum associated with periodontitis and endodontic infections. Our recent investigation revealed that MspTL induces proinflammatory cytokines and intercellular adhesion molecule 1 in THP-1 cells and periodontal ligament cells. In this study we conducted oligonucleotide microarray analysis to investigate the global transcriptional regulation in THP-1 cells stimulated with purified recombinant MspTL. MspTL upregulated the expression of 90 genes in THP-1 cells at least four fold, and the functions of these genes were categorized into adhesion, apoptosis/antiapoptosis, cell cycle/growth/differentiation, chemotaxis, cytoskeleton organization, immune response, molecular metabolism, proteolysis, signaling, and transcription. The majority of the modified genes are known to be NF-κB-responsive and interferon-stimulated genes (ISGs). The expression of 12 selected genes was confirmed by real-time RT-PCR. Because prostaglandin E2 (PGE2) is an important inflammatory mediator and Cox-2 was found to be induced by MspTL in the microarray analysis, we determined the level of PGE2 in the culture supernatants of MspTL-treated cells and found that MspTL significantly increased PGE2. Our results provide insight into the gene regulation of host cells in response to MspTL, and may contribute to the understanding of the molecular mechanism in periodontitis.
Given a protein, it is often necessary to study its geometric and physicochemical properties for studying its structure and predicting funtions of a protein. In this case, a connolly surface of a protein plays important roles for these purpose. A protein consists of a set of amino acids and a set of atoms comprise an amino acide. Since an atom can be represented by a hard 3D sphere in van der Waals model, a protein is usually modeled as a set of 3D spheres. In this paper, we present the algorithm for computing a connolly surface using Euclidean Voronoi diagram atoms of a protein. The algorithm initially locates the exterior aotms of a protein where connolly surface patches exist and computes the patches by tracking their boundary curves. Since a Euclidean Voronoi diagram is uniquely defined independent of probe radius different from other geometric structures, the connolly surfaces defined by probes of different radii can be computed without re-computing the Euclidean Voronoi diagram.
Treponema maltophilum, a Group IV oral spirochete, is associated with periodontitis and endodontic infections. In this study we analyzed the functional role of the major surface protein of this organism (MspA) in human gingival fibroblasts (HGFs). The full-length gene encoding MspA was cloned and expressed in Escherichia coli by using the expression vector pQE-30. The recombinant protein (rMspA) was purified by affinity chromatography with nickel-nitrilotriacetic acid agarose and possible contamination of E. coli endotoxin in rMspA was removed by using polymyxin B-agarose. rMspA significantly induced the expression of pro inflammatory cytokines like IL-6 and IL-8 and intercellular adhesion molecule (ICAM)-1 in HGFs, when analyzed by reverse transcription-PCR, flow cytometry, and enzyme-linked immunosorbent assay. Our results indicate that MspA of T. maltophilum may play an important role in amplifying the local immune response by upregulating the expression of proinflammatory cytokines and ICAM-1.
A conductimetric study of foam formed from mixture of the protein, β-lactoglobulin, and the nonioinc surfactant, SML, revealed that their stability was reduced at concentrations of SML in the range 3~10mM. The interaction of SML with β-lactoglobulin was investigated by fluorimetry and a dissociation constant of 0.2μM was calculated for the complex. Surface tension studies confirmed the presence of interaction between the two components and provided evidence for the progressive displacement of β-lactogloblin from the air/water interface with increasing SML concentration. Experiments using air-suspended microscopic thin liquid films revealed transitions in the chainage characteristics and thickness of the film at SML concentrations below that which resulted in destabilization of the foam. However, measurements of surface mobility of fluorescent-labeled β-lactoglobulin by a photobleaching method identified that a transition to a mobile system occurred at a SML concentration which correlated with the onset of instability in the disperse phase. The results would indicate that maintenance of the viscoelastic properties of the surface is paramount importance in determining the stability of interfaces comprising mixtures of protein and surfactant.