검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spraybased c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrodebased solar cells, providing the possibility of commercialization.
        4,000원
        2.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One-dimensional rutile TiO2 is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for TiO2 nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of TiO2 nanowires on a Ti alloy powder (Ti-6wt%Al- 4wt%V, Ti64) using simple thermal oxidation under a limited supply of O2. The optimum condition for TiO2 nanowire synthesis is studied for variables including temperature, time, and pressure. TiO2 nanowires of ~5 μm in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of TiO2 nanowires is greatly influenced by synthesis temperature and pressure. The synthesized TiO2 nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).
        4,000원
        3.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, TiO2/TiOF2 heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from 400 oC to 800 oC. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single TiOF2 and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the TiO2/TiOF2 heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.
        4,000원
        4.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for and nanocrystalline powders mixture. Effect of the milling time on the powder characteristic of the synthesized powder was investigated. Nanocrystalline with a particle size of 50 nm was obtained at . High tetragonal powder with a tetragonality(=c/a) of 1.009 and a specific surface area of was acquired after heat-treatment at for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.
        4,000원
        5.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nano-technology is a super microscopic technology to deal with structures of 100 nm or smaller. This technology also involves the developing of TiO2 materials or TiO2 devices within that size. The aim of the present paper is to synthesize WOx doped nano-TiO2 by the Sonochemistry method and to evaluate the effect of different percentages (0.5-5 wt%) of tungsten oxide load on TiO2 in methylene blue (MB) elimination. The samples were characterized using such different techniques as X-ray diffraction (XRD), TEM, SEM, and UV-VIS absorption spectra. The photo-catalytic activity of tungsten oxide doped TiO2 was evaluated through the elimination of methylene blue using UV-irradiation (315-400nm). The best result was found with 5 wt% WOx doped TiO2. It has been confirmed that WOx-TiO2 could be excited by visible light (E<3.2 eV) and that the recombination rate of electrons/holes in WOx-TiO2 declined due to the existence of WOx doped in TiO2.
        4,000원
        6.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The compaction response of nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered . But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and , respectively
        4,000원
        7.
        2009.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop TiO2 materials and TiO2 devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create TiO2 nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. TiO2 powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.
        4,000원
        8.
        2008.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of TiO2 bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and TiO2 nano powder for the compaction of TiO2 nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.
        4,000원
        9.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It prepared the TiO2 powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium dioxide(TiO2) by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase TiO2 powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the TiO2 powder for the visible light region, which also can be easily produced by wet process. The wet process TiO2 absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated TiO2. The AH-380 TiO2 powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated TiO2 powder.
        4,000원
        10.
        2006.09 구독 인증기관·개인회원 무료
        Fe-doped TiO2 nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of TiO2.
        11.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An aqueous solution of a commercial liquid synthetic detergent for kitchen use was photodecomposed in the presence of titanium dioxides powder under an atmosphere of air at room temperature. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio(H2O/titanium iso-propoxide) and calcined at 500℃. All titanium dioxides were characterized by XRD, BET surface area analyzer and UV-VIS spectrometer. The surface area of titanium dioxides prepared at R ratio=6 appeared higher volume about 20% than commercial TiO2 catalysts. XRD patterns of titania particles were observed mixing phase together with rutile and anatase type. Titanium dioxides prepared by sol-gel method show higher activity about 6% than commercial TiO2 catalysts on the photocatalytic degradation of a commercial liquid synthetic detergent for kitchen. The concentration of the detergent decreased to about 90% of its initial value at illumination times of 2 hour. Illumination for 30 minutes decreased the concentration of oxygen to about one-fifth of the initial value.
        4,000원
        15.
        1996.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        광화학 반응의 초기 유발을 위한 광촉매로 TiO2가 가장 널리 알려져 있으며, 기존의 상품보다 광촉매 활성도가 높은 촉매를 얻기 위해 Sol-Gel법을 이용하였다. TiO2 광촉매 제조를 위하여 전구체로서 Tetra-eth해-ortho-titanate(TEOT)를 이용하여 xerogeol 분말을 얻었으며, 광화학 반응의 효율을 측정하기 위해 분해대상 물질을 Dichloroacetic acid(DCA)로 선정하였다. 순수 titania 졸을 얻기 위한 최적조건은 알콕사이드 1몰당 물 40몰, 산 0.05몰이었고 pH의 범위는 3.3-3.6이었으며 Hexylene Glycol(HG)의 첨가량은 1몰임을 알 수 있었다. BET-N2방법을 이용하여 표면적을 측정한 결과 물/알콕 사이드의 몰비가 40-80범위에서 비표면적이 급격히 증가되어 DCA 의 광분해율도 증가하였으며, 몰 40몰을 첨가 후 졸-겔법으로 제조한 분말을 400˚C에서 1시간 열처리한 anatase phase의 TiO2가 최고의 광분해 효율인 약 21%를 보였다. 이는 상업용으로 가장 효율이 높은 Dagussa P-25의 DCA 분해 효율보다 2배 정도 높은 것으로 나타났다.
        4,000원
        16.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        “일라이트와 이산화티탄을 활용한 콘크리트 블록의 수질환경개선을 위한 실험연구”를 진행하기 위해 모르타르 예비실험, 수질정 화특성, 방오실험, 어독성 실험 및 실 콘크리트 블록 제조 후 관련 KS에 준한 실험을 진행한 결과 다음과 같은 결론을 얻었다. KS에 준한 콘크리 트 블록의 성능평가 결과 전 조건에서 시험기준치의 압축강도를 상회하는 것으로 측정되었으며, 다공질구조의 일라이트 치환에 따른 흡수율 증가가 문제점으로 예상되었으나, 이산화티탄과 사전 혼합하여 치환함으로써 일라이트의 대형 공극내 이산화티탄이 정착함에 따라 흡수율 또 한 문제가 없는 것으로 관찰되었다.
        17.
        2017.09 서비스 종료(열람 제한)
        The purpose of this experimental study is to investigate the application of materials of construction using TiO2. The functional Al2O3-TiO2 carrier powder was fabricated by sol-gel method, this is mixed in a cement mortar. As a result, compressive strength of mortar using Al2O3-TiO2 powder was confirmed to be superior than mortar using ordinary TiO2.