검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 36

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
        4,000원
        2.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 °C. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, multilayered SnO nanoparticles are prepared using oleylamine as a surfactant at 165oC. The physical and chemical properties of the multilayered SnO nanoparticles are determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Interestingly, when the multilayered SnO nanoparticles are heated at 400oC under argon for 2 h, they become more efficient anode materials, maintaining their morphology. Heat treatment of the multilayered SnO nanoparticles results in enhanced discharge capacities of up to 584 mAh/g in 70 cycles and cycle stability. These materials exhibit better coulombic efficiencies. Therefore, we believe that the heat treatment of multilayered SnO nanoparticles is a suitable approach to enable their application as anode materials for lithium-ion batteries.
        4,000원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In-situ carbon-coated tin oxide (ISCC-SnO2) was fabricated by colloidal processing and sucrose was used as a soluble carbon source. ISCC-SnO2 was characterized by X-ray diffraction (XRD), Raman spectroscopy, and nitrogen adsorption–desorption by BET methods, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) properties of ISCC-SnO2 were investigated in 1 M Na2SO4 solution. The specific capacitance of ISCC-SnO2 was achieved 42.7 mFcm−2 at a scan rate of 25 mVs−1 and showed excellent charge–discharge behavior.
        4,000원
        7.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, a multifunctional ophthalmic lens material with an electromagnetic shielding effect, high oxygen permeability, and high water content is tested, and its applicability is evaluated. Metal oxide nanoparticles are applied to the ophthalmic lens material for vision correction to shield harmful electromagnetic waves; the pyridine group is used to improve the antibacterial effect; and silicone substituted with urethane and acrylate is employed to increase the oxygen permeability and water content. In addition, multifunctional tinted ophthalmic lens materials are studied using lens materials with an excellent antibacterial effect (2,6-difluoropyridine, 2-fluoro-4-pyridinecarboxylic acid) and functional (UV protection, high wettability) lens materials (2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy)benzophenone). To solve problems such as air bubbles generated during the polymerization process for the manufacturing and turbidity of the lens surface, polymerization conditions in which the defect rate is minimized are determined. The results show that the polymerization temperature and time are most appropriate when they are 110 oC and 40 minutes, respectively. The optimum injection amount of the polymerization solution is 350 ms. The turbid phenomenon that appears in lens processing is improved by 10 to 95% according to the test time and conditions.
        4,000원
        8.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/ SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below 350℃. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and H2O increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., Al2O3) that can sufficiently prevent the diffusion of impurities into the channel.
        4,000원
        9.
        2017.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.
        4,000원
        10.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at 700 °C for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO’s before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO’s after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % In2O3, 10 wt. % ZnO, and 10 wt. % SnO2 which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.
        4,000원
        11.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability (620mA h g−1 capacity retention up to 50 cycles), as well as excellent high-rate performance (250 mA h g−1 at 700mAg−1) compared to that of commercial SnO2. The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in SnO2. This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.
        4,000원
        13.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from 200˚C to 800˚C has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.
        4,000원
        14.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        마이크론 크기를 가지는 ITO(indium tin oxide) 입자들은 인듐과 틴의 수용성 전구체들과 유기 첨가제를 분무 열분해하여 얻었다. 유기 첨가제로서는 에틸렌글리콜과 시트르산을 이용하였다. 분무 열분해 시 에틸렌글리콜과 시트르산과 같은 유기첨가제를 첨가하지 않고 얻어진 ITO 입자들은 구형이며 속이 꽉찬 형태를 가지는데 비해 유기 첨가제를 첨가하여 분무 열분해를 하면 얻어지는 ITO 입자들은 유기 첨가제의 양이 증가 할수록 껍질이 얇고 다공성이 증대된 중공 입자가 얻어진다. 유기첨가제를 첨가하지 않고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간동안의 습식 볼밀링에 의해 나노 크기의 ITO로 전환되지 않으나, 유기첨가제를 첨가하고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간 동안의 습식 볼밀링에 의해 나노 크기의 ITO로 쉽게 전환되었다. 응집된 나노 크기의 ITO의 일차 입자의 크기를 Debye-Scherrer 식에 의해 계산하였고 ITO 입자를 압축하여 만든 펠렛의 표면저항을 측정하였다.
        4,000원
        15.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film witha hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45GHz of high ionization energy wereinvestigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity wereobtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron depositionpositions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. Thesurface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined usingSEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonancecondition was uniformly formed in at a position 16cm from the center along the Z-axis. The plasma spatial distribution ofmagnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. Therelative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current rangeof 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50cm revealedthat the grains were uniformly distributed with sizes in the range of 2~7nm. In our experimental range, the electrical resistivityof film was able to observe from 1.0×10−2 to 1.0×10−1Ωcm where optical transmittance at 550nm was 87~89%. Theseproperties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.
        4,000원
        16.
        2013.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a 1mm×1mm vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.
        4,000원
        17.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.
        4,000원
        18.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the nanotubes exhibited excellent cyclability and reversible capacity of up to 25 cycles at as compared to nanoparticles with a capacity of . Such excellent performance of the nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.
        4,000원
        19.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at 1000˚C for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at 1500˚C for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.
        4,000원
        20.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.
        4,000원
        1 2