검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 68

        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 고속 스핀에코 기법의 T2 강조영상 획득에 있어 온도 상승을 최적화하기 위한 에코 개수(echo train length, ETL) 25를 기반으로 재자화 펄스의 범위에 따른 온도 변화와 이에 따른 신호대잡음비(signal to noise ratio, SNR) 분석을 통한 합리적인 영상 파라미터를 제시하고자 하였다. 온도 변화측정은 수소원자 공명주파수(proton resonance frequency shift. PRF) 기법을 활용했으며, 재자화 펄스의 각도(flip angle, FA)에 따른 온도 상승을 측정하였다. 온도 변화는 재자화 펄스 90도 인가 시에 약 0.202±0.023°C로 증가했으며, 이는 최소 FA인 60도(약 0.196±0.024°C)와 가장 유사하게 나타났다. 또한, 그 영상의 SNR은 FA 120도과 150도에 비해 FA 90도에서 약간 감소하는 경향이 나타났지만(약 12.5%), FA 180도와 비교하여 큰 차이는 발생하지 않았다 (FA 90도=349.66±3.68; FA 180도=357.68±3.21). 이 결과들은 고속스핀에코 기법에서 ETL 25를 사용한 빠른 영상획득 시간을 기반으로 합리적인 영상신호와 재자화 펄스에 의한 최소 온도 상승을 나타내며, 이는 인체 MR 안전기준을 충분히 보장하는데 기여할 수 있다. 특히, ETL 25와 결합된 90도 FA 사용은 가속화된 영상획득 시간, 합당한 T2 영상의 SNR, 그리고 최적의 인체 온도 증가를 위한 고속스핀에코 기법에서의 최적화된 영상 파라미터가 될 수 있을 것으로 사료된다.
        4,000원
        3.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Subway trains with air cleaners have been newly deployed in the Seoul Metro system. The purpose of this study was to determine differences regarding in-cabin particulate matter with respect to concentrations less than 10 um (PM10) and 2.5 um (PM2.5) through the operation of air cleaners in subway trains. One subway train newly installed with in-cabin air cleaners on Seoul Metro Line number 2 was chosen monitoring in 2020. In-cabin air cleaners were turned-on at both front and back areas while those in the middle area were turned-off while the train was running. In-cabin PM10 and PM2.5 concentrations were measured in each area using a real-time aerosol monitor. Average in-cabin PM10 concentrations were statistically significantly lower (by 15%) in areas with air cleaners turned-on (43.8±12.1 μg/m3) compared to those areas where the air cleaners were turned-off (51.4±15.0 μg/m3). Average incabin PM2.5 concentrations were significantly lower (by 14%) in areas with air cleaners turned on (33.7±12.2 μg/m3) compared to those areas where air cleaners were turned-off (39.2± 14.4 μg/m3). In-cabin PM10 and PM2.5 concentrations ratios were similar regardless of area with air cleaners turned-on or turned-off. The in-cabin PM10 and PM2.5 concentrations were not associated with commute time. Use of air cleaners in subway trains effected reductions in in-cabin PM10 and PM2.5 concentrations.
        4,000원
        4.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the flow analyses were carried out on the electric train models with three kinds of mounting materials installed at the front part of train. By examining the results of flow rate and pressure, It was investigated which type of design should be designed to be more efficient in high-speed operation. The three types of models are set as models a, b and c, and each has its own shape. For all models, the wind speed was set at 110 km/h, the most common driving speed for wide-area electric trains. In the case of the model a, it was good at cutting the wind flow as a round shape when viewed from the top. But from the side, it showed a vortex forming in the upper corner. To the contrary, the model b, which has a wedge-shaped side, could be seen from the top as a result of a vortex. Finally, in the case of model c combined with models a and b, the least vortex, front pressure, and resistance forces were shown by selecting the flow advantages of models a and b. By utilizing this study result, the flow velocity and pressure are investigated without flow experiment by shape of the front part of electric train, and the flow capacity can be seen.
        4,000원
        5.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker– Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.
        4,000원
        6.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        무도상 교량은 레일을 이음매판으로 부설하여 사용하고 있어 과다한 충격이나 궤도 틀림 등의 발생 우려로 인하여 열차의 고속주행이 어려운 실정이다. 열차의 주행안정성을 확보하기 위해서는 상호작용에 영향을 미치는 인자를 분석하여 동적 안전성에 대하여 검토할 필요가 있다. 이 연구에는 열차가 운용중인 판형교량의 현장계측을 통하여 궤도 구조 및 주거더의 충격계수를 도출하고 이를 기존연구와 비교 및 참고하여 열차의 주행속도를 고려한 충격계수의 추정식을 산정하였다. 궤도의 충격계수 산정식은 기존 연구에서 제안한 식과 유사하게 산정되었으며, 무도상교량 거더의 충격계수 산정식과 일본의 철도교 충격계수 식과 비교한 결과, 일본의 철도교 충격계수 식은 본 연구에서 산정한 거더의 충격계수 1배수 식과 2배수 식 사이에 존재하는 것으로 나타났다.
        4,000원
        7.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using computational fluid dynamics (CFD), this study simulated the air supply and exhaust conditions inside KTXSancheon train cabin to analyze the airflow, velocity, temperature, and residence time distributions. Based on the analyzed airflow in the cabin, the trajectory properties of droplets with various diameters exhaled from a passenger in a specific seat were analyzed. In the train cabin, forced airflow was formed by the operation of an air conditioning unit, while air stagnation occurred through spinning vortices at the front and rear where there were no floor outlets. Droplet particles ≤36 μm in diameter were dispersed throughout the cabin following the airflow generated by the air conditioning unit. The degree of dispersion differed according to the passenger seat location. In addition, the expelled droplets were mostly deposited on the surfaces of passenger bodies, seats, and floor. The ratio of deposited droplets to suspended droplets was increased with increasing droplet size. Further, the CFD study allowed the prediction of the possibility of exposure to exhaled droplets by estimating the dispersion and deposition properties of droplets released from a passenger in a specific seat. This study can be utilized to adjust the operation of air conditioning units and encourage the installation of air-purifying units to minimize secondary infections.
        4,000원
        8.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains’ wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, Al2O3 ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at 150oC to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.
        4,000원
        9.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the whole process of 6xxx series aluminum extruded alloy for high speed train interior and exterior parts are characterized. The mechanical properties, and chemical composition of the case materials were evaluated for the 6063, 6061 and 6N01 alloy profiles and compared to the commercial materials and the evaluation results satisfied the standard. The cast product was extruded using the air slip(AS) casting method and the direct casting(DC) method and these were again heat-treated conditions with T5 or T6. The remarkable point is that the extrusion temperature and pressure of 6061 alloy were somewhat higher than those of other alloys. The reason is that 6061 alloy exhibited brittle fracture due to grain boundary segregation even at the tensile fracture surface and the fact that the product used a billet by the direct casting method instead of air slip one. The mechanical properties were evaluated for the 6063, 6061, 6N01 extruded alloys and the evaluation results were analyzed and satisfied the standard properties.
        4,000원
        10.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured and prediction. From the results, we investigated the effect for elevated railway noise.
        4,000원
        11.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the extrusion process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are developed. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more high farmable extruded aluminum casting alloys for interior or exterior materials has been the scope of this study. The extruded die design was performed for the 6063, 6061 and 6N01 alloy profiles and extrusion test was executed. From these results, the extrusion conditions such as extrusion pressure following as billet temperature and materials were carefully examined.
        4,000원
        12.
        2018.05 구독 인증기관·개인회원 무료
        The key to solving the race conflict problem is that you need to find a train profile of viable trains, that is, a schedule of integrated trains, in a sufficiently short time, while maintaining safe seizure. In the previous research, we proposed a two-step solution through partitioning and deconstruction of the problem and discretization of the path. However, this method has a limitation in that it cannot be applied only at the nodal point. In this study, we tried to obtain a train schedule that considers the safety profile and considers the more secure and microscopic viewpoint by overcoming the limitation of the existing model by continuously considering the speed profile without disassembling the problem. To do this, we propose a method of modeling the detailed schedule decision step as a continuous variable in the existing twostep solution and approximate the calculation based on several functions.
        13.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the whole process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are characterized. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more reliable lightweight aluminum and aluminum alloy for interior or exterior materials has been the scope of this study. The mechanical properties, and chemical composition of the case materials were evaluated for the 6063, 6061 and 6N01 alloy profiles and compared to the commercial materials and the evaluation results satisfied the standard.
        4,000원
        15.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 곤충 모방 날갯짓 초소형 비행체에 적용될 끈을 이용한 날갯짓 구동 장치의 구동 원리와 그 최적화 과정이 소개된다. 이 날갯짓 구동 장치는 끈을 이용하여 구조의 경량화와 관성력 감소로 인한 에너지 효율 상승을 목적으로 설계되 었다. 먼저 장력만 전달할 수 있는 끈의 특성을 고려하여 운동학적인 수식이 정립되었으며, 이를 통해 구동 장치의 거동 특 성을 파악할 수 있었다. 이 수식들은 수정된 패턴 검색 최적화 과정에 포함되어 메커니즘의 운동학적 최적화를 가능하게 만 들었다. 최적화된 형상으로 제작된 시제품은 설계의 구동 원리에 맞게 운동하였으며, 그 날갯짓 폭은 목표한 날갯짓 폭을 만 족시켰다. 수치적 시뮬레이션과 실험 결과는 잘 일치하여 제시된 구동 장치가 실제로 활용될 수 있음을 보였다.
        4,000원
        16.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The vibration of wheel is mainly affected by a fault on a wheel contacting with railway when average speed is over 60km/h. When the wheel vibration caused by wheel scratch increase more than a certain criterion, the wheel is shaved to reduce the vibration. This criterion of shaving is determined from the acceleration signal measured from the sensor mounted on the railway. In this study, vibration characteristics of the rolling wheels having a fault is analyzed with experimental approach to verify the acceleration criterion for shaving wheel.
        4,000원
        17.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, with development of city traffic network planning, there are various effects with living space from vibration of railway. But, study which about effect from vertical vibration in floor slab in nearing structure is lack in nowadays. This thesis have analysed result from acceleration response per distance as well as proceed with serviceability evaluation and extracted natural frequency from measuring vibration of railway using mobile phone application which is oriented for building which have distances about 5m to 22m from railway.
        4,000원
        18.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The train-centric control systems development has some distinct points in that a big size of government budget is in general expended in there and the development duration seems to be long. In addition, the changes are ever made continuously in the capability and operational requirements for Trains. Thus, the impact of the potential changes in the required operational capability on the development activities can induce some type of project risks [7]. As such, proper management of project risk has been one of crucial subjects in the train systems development. All these notes combined together make it the significance of the safety management process be raised further up in the train-centric control systems development. As such, the underlying safety management process should be capable of appropriately handling the potential risks that can be created due to the unexpected changes and the long-term development period. The process should also be complemented for the safety consideration of train-centric control systems, for instance, stop. To study these aspect is the objective of the paper. To do so, a step-by-step approach to analyzing the safety management process is first presented. Then, to enhance the process some necessary and useful activities are added in terms of risk and safety management. Then, to pursue some enhancement on the process, a set of necessary and useful activities are added in terms of risk and safety management. The resultant process is further analyzed and tailored using a design structure matrix method. The resultant process is applied in a train-centric control development as a case study.
        4,000원
        19.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가속도를 계측하여 부상력을 제어하는 것은 가장 기본적인 자기부상열차의 부상공극 제어기법이다. 이에 이 연구에서는 가속도 되먹임에 기반한 부상공극제어기법을 자기부상열차에 적용하고, 이를 고려한 자기부상열차-가이드웨이 상호작용계의 동적거동 해석기법을 개발한다. 개발된 해석기법을 사용하여 실제 자기부상열차-가이드웨이 상호작용계의 동적해석을 수행하였다. 해석 결과를 통해 가속도 되먹임에 기반한 부상공극제어기법을 적용하여도 현재까지 제안된 자기부상열차 설계 기준을 충분히 만족함을 확인하였다. 즉, 현재 제안된 자기부상열차 가이드웨이 구조물의 설계 기준을 보완하여 안전하면서도 경제적인 구조물의 건설이 가능해질 것으로 예상된다.
        4,000원
        20.
        2015.11 구독 인증기관 무료, 개인회원 유료
        This study highlights empirically the relationship among major constructs such as accident, fear and anxiety emotion, self-efficacy, and negative spillover of work, focused on the railway drivers. The differentiated factor of this study is in that the experience of accident was posed as exogenous variable. Hypothesis tests based on 201 samples verified that the experience of accidents showed a significant effect on negative spillover of work mediated by fear and anxiety, with moderating effect of self-efficacy between fear and anxiety and negative spillover of work. However, the moderating effect was shown as increasing the degree of negative spillover of work, since the drivers recognized their fear and anxiety accrued by accident experience as uncontrollable. This finding suggests the need for mitigating driver's negative emotion - fear and anxiety - through an introduction of practice such as exemption of settlement obligation in accident site and lowering of the penalty for accident responsibility.
        4,000원
        1 2 3 4