검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Sparassis crispa(cauliflower mushroom), which is rich in beta-glucan, was pulverized using ultrafine grinding technology for its potential utilization as a diverse food ingredient. The physical and antioxidant properties of cauliflower mushroom powder were evaluated at various grinding times. The results showed that as the grinding time of cauliflower mushroom increased, the average particle size significantly decreased (p<0.05). Additionally, the water-holding capacity, swelling capacity, and water solubility index of cauliflower mushroom increased significantly(p<0.05). Based on the analysis mentioned above, cauliflower mushroom prepared as a superfine powder for 5 minutes exhibited superior physical and chemical properties as well as antioxidant characteristics and is expected to be widely used in various foods.
        4,000원
        2.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 was prepared after milling for 50 min. The milled powders were pressureless-sintered at for 4 h under atmosphere. This powder showed excellent sinterability leading to full densification after sintering at for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the impurity.
        4,000원
        3.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Angelicae gigantis Radix (dried root of Angelica gigas) including major bioactives such as decursin and decursinol angelate provides rich flavors and several healthy benefits. Recent studies have shown that ultrafine powders of herbal medicines provide better physical properties and biological activities. Thus, ultrafine Angelica powder was added into the oligosaccharide syrup to provide flavors and healthy benefits in this study. Angelicae gigantis Radix was pulverized into d(0.1) = 3.220, d(0.5) = 7.822, and d(0.9) = 7.817 μm respectively using an air-flow mill. The ultrafine Angelica powder was added into the oligosaccharide syrup process with different ratios of water to oligosaccharide syrup at 1:5, 1:8, 1:11, and 1:14. The physicochemical properties such as viscosity and bulk density were measured. The Stokes’ law was applied to predict the sedimentation velocity of the added Angelica powder in the syrup. The Angelica syrup prepared in this experiment showed good stability since the Angelica particles precipitated down slowly. The ratio of water to oligosaccharide syrup at 1:11 showed the optimal preparation in terms of the stability and the viscosity. The ultrafine-sized herbal powders such as Angelicae gigantis Radix have potentials for various food and pharmaceutical applications.
        4,000원
        4.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders
        4,000원
        6.
        2006.04 구독 인증기관·개인회원 무료
        In the present study, ultrafined Zr-V-Fe based alloy powder prepared by a plasma arc discharge process with changing process parameters. The chemical composition of synthesized powder was strongly influenced by the process parameters, especially the hydrogen volume fraction in the powder synthesis atmosphere. The synthesized powder had an average particle size of 50 nm. The synthesized Zr-V-Fe based particles had a shell-core structure composed of metal in the core and oxidse in the shell.
        10.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultra fine titanium carbide particles were synthesized by novel metallic thermo-reduction process. The vaporized TiC1+ gases were reacted with liquid magnesium and the fine titanium carbide particles were then produced by combining the released titanium and carbon atoms. The vacuum treatment was followed to remove the residual phases of MgC1 and excess Mg. The stoichiometry, microstructure, fixed and carbon contents and lattice parameter were investigated in titanium carbide powders produced in various reaction parameters.
        4,000원
        11.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine TiC-15%Co powders were synthesized by a thermochemical process, including spray drying, calcination, and carbothermal reaction. Ti-Co oxide powders were prepared by spray drying of aqueous solution of titanium chloride and slurry, both containing cobalt nitrate, fellowed by calcination. The oxide powders were mixed with carbon powder to reduce and carburize at 1100~125 under argon or hydrogen atmosphere. Ultrafine TiC particles were formed by carbothermal reaction at 1200~125, which is significantly lower than the formation temperature (~1) of TiC particles prepared by conventional method. The oxygen content of TiC-15%Co powder synthesized under hydrogen atmosphere was lower than that synthesized under argon, suggesting that hydrogen accelerates the reduction rate of Ti-Co oxides. The size of TiC-15%Co powder was evaluated by FE-SEM and TEM and Identified to be smaller than 300 nm.
        4,000원