Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.
Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of Fe75C11Si2B8Cr4 were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of 59×59×33nm3, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.
In this work, effect of various process-control agents (PCAs) on the mechanical alloying of amorphous alloy of has been investigated. The dependence of the particle shape, size and crystallization behavior of the amorphous alloy powders on the type of PCAs and their concentrations was investigated by using X-ray diffraction, field-emission scanning electron microscopy and differential scanning calorimetry. It was found that the additive of toluene could affect positively the amorphization and thermally induced crystallization processes, as well as the size refinement, morphology and particle-size distribution of as-milled powders in comparison with alloy obtained without PCA.
The amorphization process and the thermal properties of amorphous TiCuNiAl powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2 = 42.4) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t 3 h), disintegration (3 h < t 20 h), and homogenization (20 h < t 40 h) (t: milling time). In the DSC experiment, the peak temperature T and crystallization temperature T were 466.9 and 444.3, respectively, and the values of T, and T increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T.
A series of experiments demonstrated that an addition of Ag into (Cu0.5Zr0.5)100-xAgx amorphous alloys alters the plasticity of the alloys in a systematic manner. Energy dispersive x-ray spectroscopy (EDS) conducted on the (Cu0.5Zr0.5)100-xAgx alloys exhibited the presence of compositional modulation, indicating that compositional separation had occurred. The presence of compositional modulation was also validated using a combined technique of molecular dynamics and Monte Carlo simulation. In this study, the effect of Ag on the compositional separation in (Cu0.5Zr0.5)100-xAgx bulk amorphous alloys was investigated to understand the role played by the phase-separating element on the plasticity of the amorphous alloys.
The hydrogen sorption speeds of amorphous alloy and its crystallized alloys were evaluated at room temperature. amorphous alloy was prepared by ball milling. The hydrogen sorption rate of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption rate of partially crystallized alloy was explained in terms of grain refinement that has been known to promote the diffusion into metallic bulk of the gases. The grain refinement could be obtained by crystallization of amorphous phase resulting in the observed increase in sorption property.
Microstructure and soft magnetic properties of bulk amorphous and/or nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys prepared by consolidation at 5.5GPa were investigated. The relative density of the bulk sample 1 (from amorphous powders) was 98.5% and the grain sizes were about 10.6nm. While the relative density and grain sizes of bulk sample 2 (from nanocrystalline powders) are 98% and 20.1nm, respectively. Particularly, the bulk samples exhibited a good combined magnetic property: for Sample1, Ms=125emu/g and Hc=1.5Oe; for Sample2, Ms=129emu/g and Hc=3.3Oe. The success of synthesizing the nanocrystalline Fe-based bulk alloys will be encouraging for the future development of bulk nanocrystalline soft magnetic alloys.
비정질 Tb45.7 Fe54.3-x /Cox 및 Tb50.2 /Fe 49.8-x/Cox (0≤x≤9.6) 합금박막의 자기적 특성 및 자기변형특성에 대하여 체계적으로 조사하였다. 박막제조는 Fe 타게트에 Tb, Co 소편으로 구성된 복합타겟 방식의 rf 마그네트론 스퍼터링법에 의해 제조하였다. XRD 조사에의 한 박막의 미세구조는 잘 발달된 비정질 구조를 나타내었다. Tb45.7 Fe54.3-x Cox (x=2~4)에서 우수한 고유자기변형특성 및 저자기장자기변형특성을 얻었다. 즉, 100 Oe의 저자장에서 130ppm의 자기변형을 나타내었으며 고유자기변형 (인가 자기장, 5 kOe)은 330ppm에서 400ppm으로 증가하였다.
자자들은 최근 비고용 Cu-Ta계의 기계적 합금화(Mechanical Alloying) 방법을 이용하여 이계에 있어서 비정질상의 형성에 대한 구조적 확인을 중성자 회절과 EXAFS(Extended X-ray Absorption Fine Structure)의 실험결과로 부터 얻었다. Cu-Ta계와 같이 혼합 엔탈피(Heat of Mixing: δ Hmix)가 정인계에 있어서 비정질상 형성에 대한 연구는 구조적인 측면 뿐만 아니라. 시료의 전자물성에 대해서도 많은 연구가 되어야만 할 것으로 사료된다. 따라서 본 논문에서는 120시간 MA방법으로 제작한 시료에 대하여 초전도 천이온도 및 X선 광전자분광 실험에서 얻은 가전자대 구조의 전자물성을 측정하고, 그 결과로부터 이종원자 Cu와 Ta간의 결합은 화하결합에 의한 생성임을 확인하였는데, 이들 결과로부터 120시간 MA를 행하여 얻어진 시료는 확실하게 비정질 합금임을 알 수 있었다.
Fe78B13Si9 비정질 합금의 결정화 거동과 취성 현상을 시차열량기 시험, x-선회절시험 및 투과 전자현미경 관찰을 통해서 조사 연구하였다. 결정화는 두단계의 발열반응으로 진행되었으며, 첫번째 단계에서는 비정질로부터 B.C.C. 구조인 α-(Fe, Si)의 수지상이 생성되었고, 두번째 단계에서는 남아있던 비정질로부터 B.C.T 구조인 Fe2B가 형성되었다. 에닐링 온도에 따른 시편의 파단과 변형율은 비정질 상태인 약 340˚C부터 급긱히 감소하였다.