One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 °C, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 °C, 1,000 °C and 1,100 °C, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.
한반도의 약 70% 이상을 차지하고 있는 산지는 많은 산들과 산맥으로 이루어져 있으며, 산맥들은 대기환경에 큰 영향을 준다. 산맥의 분류조사는 1900-1902년 일본학자에 의거 수행 된 후, 현재 산맥의 이름이 매우 많고 혼선이 되고 있다. 본 연구는 기존의 산맥 이름과 그 분류를 간단히 하여 사회적 교육적 활용에 가치를 두고 있다. 먼저, 중국 의 만주로부터 (대)한반도까지 주축을 이루는 세계적인 제2차 중규모산맥을 단일 이름인 고려산맥으로 명명하였다. 그 리고, 고려산맥에 수반되는 지역적인 제3차 산맥들은 지린(길림)산맥, 함경산맥, 태백산맥, 소백산맥으로 분류하고, 그 다음 제4차 산맥은 랴오닝산맥, 옌볜(연변)산맥, 함북산맥, 평북산맥, 황해산맥, 차령산맥, 경상산맥, 남해산맥 등 8개의 중소 산맥으로 분류 하였다. 일반적으로 한반도의 산맥들은 지구규모 대순환의 영향을 지속적으로 받고 있다. 산맥의풍상과 풍하 측에서 발생하는 공기환경적인 변화에 따라, 인간과 생태계에 주는 대기환경의 영향평가와 그 감시의 필요 성을 강조하였다.
With global warming and the rapid increase in urbanization accompanied by a concentration of population, the urban heat island effects (UHI) have become an important environmental issue. In this study, rooftop greening and permeable asphalt pavement were selected as measures to reduce urban heat island and applied to a simple virtual urban environment to simulate temperature change using ENVI-met. A total of five measures were tested by dividing the partial and whole area application of each measure. The results showed that the temperature range of the base experiment is 33.11-37.11 ℃, with the UTCI comfort level described as strong heat and very strong heat stress. A case applied permeable asphalt has a greater temperature difference than a rooftop greening case, the larger the area where each condition was applied, the greater the temperature change was.
전통 회화 및 단청용 채색 안료 중 녹색을 표현하기 위해 사용된 동록안료의 재료과학적 특성 및 안정성을 알아보기 위하여 염화동(Atacamite), 초산동(Verdigris) 2종의 안료를 이용하여 평가를 진행하였다. 구성광물 분석 결과, K-AA는 아타카마이트(Atacamite)가 주요 구성광물로 천연 광물성 재료로 확인되고 K-VA 는 호가나이트(Hoganite)로 확인되었다. 동록안료의 안정성을 저해하는 요인을 찾고자 UV 노출, CO2/NO2 가스부식 및 염수분사 시험 등의 분석을 실시하였다. 색상 안정성을 가장 크게 저해하는 요인은 두 안료 모두 염수분사 시험으로 시료 표면에 염생성물이 생성되어 변질되는 등 손상이 가중되었다. 또한 대기오염물질인 NO2의 영향도 두 안료 모두 육안으로 인지될 정도로 색이 변하여 주요 손상 요인으로 작용되는 것으로 판단 된다. 특히 K-VA의 경우 K-AA와는 달리 UV 노출 평가 후 녹색에서 흑색으로 변하면서 본래의 색상을 완전히 잃어리는 것으로 K-VA의 주성분인 Hoganite가 UV 노출 후 Tenorite로 물질이 변했기 때문으로 판단된다. 두 안료의 대기환경 영향 평가 결과, K-AA에 비해 K-VA이 대기환경 영향에 상대적으로 취약한 모습을 보였다.
To determine the size distributions of water-soluble inorganic ionic species (WSIS) in roadside aerosols, sampling experiments were carried out in the urban roadside area of Jeju City on August 2018 and January 2019 by using the eight-stage cascade impactor sampler. The mass of roadside aerosols were partitioned at 57% in fine fraction, 36-37% in coarse fraction, and 6-7% in giant fraction, regardless of summer and winter. The mass concentrations of WSIS except for Na+ and SO42- in roadside aerosols were higher in winter than in summer. The size distributions of Na+, Mg2+, Ca2+ and Cl- were characterized by bimodal types with coarse particle mode peaking around 3.3-4.7㎛ and 5.8-9.0㎛ . The size distributions of NO3 - and K+ shifted from a single fine mode peaking around 0.7-1.1㎛ in winter to bimodal and/or trimodal types with peaks around coarse mode in summer. SO4 2- and NH4 + showed a single fine mode peaking around 0.7-1.1㎛ . The MMAD of roadside aerosols was lower than that of Na+, Mg2+, Ca2+ and Cl-. Based on the marine enrichment factors and the ratio values of WSIS and the corresponding value for sea water, the composition of roadside aerosols in Jeju City may be practically affected by terrestrial sources rather than marine source.
본 연구에서는 국내에서 사용되고 있는 우레탄계, 세라믹계, 폴리실록산계 및 불소수지계 강교량용 도장계를 대상으로 실내 부식실험을 실시하여 도장계별 노화모델을 도출하였다. 상도를 구분하여 각 도장계별로 시험편을 제작하였으며, 직경 0.5, 1, 3, 5 mm의 원형 결함을 도입하였다. ISO 20340를 이용하여 극한환경을 모사한 부식촉진실험을 실시하였다. 도장계별 노화곡선은 원형결함의 노화면적을 기준으로 평가되었다. 노화곡선을 사용하여 공용중인 강교의 도장 사용수명을 평가하기 위하여 촉진배율을 산출하였으며, 촉진배율은 ISO 20340과 ISO 9223의 대기환경 부식속도를 기준으로 산출되었다. 실험결과, 노화진전속도는 원형결함의 크기와 상관없이 증가하였으며, 노화면적이 3%일 때 우레탄 도장계의 노화수명은 C2, C3, C4 및 C5 등급에서 약 31.8, 15.8, 9.9 및 3.9년으로 평가되었다.
The durability of the steel structure can be affected by atmospheric corrosion environments as temperature, humidity, airborne salt etc.. However, atmospheric corrosion environments can be locally changed depending on structural condition and shape. To estimate the local atmospheric corrosion environments depending on structural member exposed to the marine environment, corrosion level of structural member in steel bridge was examined from exposure tests.
Airborne chlorides, sulfur dioxide and humidity are the most important causes and acceleration factors of corrosion of the steel member. In this study, such acceleration factors are quantified by analysis of reference data about velocity on corrosion for the determination of durability grade of steel member.
Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.
Indices are selected for the evaluation of deterioration of coated steel, and an evaluation method is proposed for each index. The evaluation methods proposed in this study are then applied on the existing inspection data measured on site, and the correlation between the resulting evaluation scores and service life of the coating is derived statistically. This correlation called to as the deterioration model can be used to determine the performance grade for the durability of coated steel.
This study was conducted for the development of degradation model for the coated steel member in the atmospheric environment. Field inspection data was assessed against the existing evaluation factors which were proposed by the related research process. A correlation between evaluated degradation score and service life of coated steel member was plotted on the graph, and degradation of the coated steel member could be evaluated by quantitative analysis method.
In this study the urban atmospheric environment map in Busan was made and it consist of the atmospheric environment element map and the atmospheric environment analysis map. The atmospheric environment element map covered the topography, the urban climate, the air pollutant emission, ozone and PM10 concentrations in Busan and the atmospheric environment analysis map included the thermal environment and the wind flow by using WRF meteorological numerical simulation. The meteorological elements from 2007 to 2011 in Busan were used in this study. As a result, in the center of Busan and Buk-gu along to the Nakdong river was the temperature high. To analyze the air flow of Busan 3 clusters depending on the wind direction were extracted with the cluster analysis. The results of the analysis on the detailed wind field of each cluster showed that the weak ventilation could be happened locally at the specific meteorological condition.
The characteristics of meteorological conditions related to changes in atmospheric environment on Jeju Island were investigated during recent years (2010-2012). This analysis was performed using the hourly observed data of meteorological variables (air temperature, wind speed and direction) and air pollutants (O3, PM10, SO2, NO2, and CO). Out of 5 pollutants, O3 and PM10 concentrations have frequently exceeded national environmental standards in the study area during the study period, with relatively higher concentrations than the others. The concentrations of O3 and PM10 in 2010 and 2011 were somewhat higher than those in 2012, and their highest concentrations were mostly observed in spring followed by fall. Nighttime O3 concentrations (with relatively high concentration levels) were almost similar to its daytime concentrations, due to less O3 titration by very low NO concentrations in the target area and in part to O3 increase resulting from atmospheric transport processes. The transport effect related to the concentration variations of O3 and PM10 was also clarified in correlation between these pollutants and meteorological variables, e.g. the high exceedance frequency of concentration criteria with strong wind speed and the high concentrations with the westerly/northwesterly winds (e.g., transport from the polluted regions of China). The overall results of this study suggest that the changes in atmospheric environment in the study area were likely to be caused by the transport effect (horizontal and vertical) due to the meteorological conditions rather than the contribution of local emission sources.
Numerical simulation is essential to indicate the flow of the atmosphere in the region with a complicated topography which consists of many mountains in the inland while it is neighboring the seashore. Such complicated topography produces land and sea breeze as the mesoscale phenomenon of meteorology which results from the effect of the sea and inland. In the mesoscale simulation examines, the change of the temperature in relation to the one of the sea surface for the boundary condition and, in the inland, the interaction between the atmosphere and land surface reflecting the characteristic of the land surface. This research developed and simulated PNULSM to reflect both the SST and vegetation effect as a bottom boundary for detailed meteorological numerical simulation in coastal urban area. The result from four experiments performed according to this protocol revealed the change of temperature field and wind field depending on each effect. Therefore, the lower level of establishment of bottom boundary suitable for the characteristic of the region is necessary to figure out the atmospheric flow more precisely, and if the characteristic of the surface is improved to more realistic conditions, it will facilitate the simulation of regional environment.
In order to study the degree of improved air quality as an outcome of the action plan of Atmospheric Environment Improvement in Gimhae, Gyeongnam Province, we investigated the status and trends of air pollutant before and after the plan. Nitrogen dioxide and ozone, both classified as hazardous substances, were closely monitored with particular attention. The level of sulfur dioxide, nitrogen dioxide, fine particles and ozone (but for carbon monoxide) was decreased after the plan was implemented. The number of days on which ozone exceeded the National Ambient Air Quality Standard has decreased, but the level was still often exceeded. The level of nitrogen dioxide did not surpass until the 2006 standard, but when the revised 2007 standard was implemented, it exceeded 80% of some standards. The yearly level of ozone has decreased since the plan was introduced. The concentration of nitrogen dioxide, however, has reduced in high order area while increased in low order area.
This study aims to produce fundamental database for Environment Impact Assessment by monitoring vertical structure of the atmosphere due to the mountain valley wind in spring season. For this, we observed surface and upper meteorological elements in Sangin-dong, Daegu using the rawinsonde and automatic weather system(AWS). In Sangin-dong, the weather condition was largely affected by mountains when compared to city center. The air temperature was low during the night time and day break, and similar to that of city center during the day time. Relative humidity also showed similar trend; high during the night time and day break and similar to that of city center during the day time. Solar radiation was higher than the city, and the daily maximum temperature was observed later than the city. The synoptic wind during the measurement period was west wind. But during the day time, the west wind was joined by the prevailing wind to become stronger than the night time. During the night time and daybreak, the impact of mountain wind lowered the overall temperature, showing strong geographical influence. The vertical structure of the atmosphere in Dalbi valley, Sangin-dong had a sharp change in air temperature, relative humidity, potential temperature and equivalent potential temperature when measured at the upper part of the mixing layer height. The mixing depth was formed at maximum 1896m above the ground, and in the night time, the inversion layer was formed by radiational cooling and cold mountain wind.
Elements of atmospheric environment, temperature, humidity and wind, at the compus of KNU(Kyungpook National University) were investigated by the observations. The observed data were compared with those of DWS (Daegu Weather Station). The simulations of wind field and dispersions of polluted gases were conducted by MUKLIMO under the various conditions. The results show that the atmospheric environment of KNU are suitable but the campus does not play role as a heat sink in the city. The simulations of wind field show the air flows and wind channels in the campus clearly. The exhausted gases by motor vehicles on the northside street of campus affect very much to the campus with NW(300˚) wind. The running cars in the campus are also pollute much on the campus with the various wind directions. The characteristics of environmental conditions, various meteorological fields, wind channels, and dispersion of exhausted gases at the campus of KNU were understood quantitatively in the study.