To understand effects of the compositions of marine macrobenthic communities on carbon storage in subtidal rocky habitat, a diving survey was conducted at Aewol and Biyangdo stations in the northwestern regions of Jeju Island in the summer of 2023. Cluster analysis revealed no significant differences in community composition between the two stations. The mean biomass of the dominant species was Cnidaria (2,047.4 gwwt m-2) of macroinvertebrate, followed by Rhodophyta (745.4 gwwt m-2) of seaweed in studied areas. According to similarity percentage analysis, Alveopora japonica and Ecklonia cava were major contributors to the communities in Aewol, whereas diverse marine organisms, including these two species, contributed to the community in Biyangdo. The estimated mean carbon storage by benthic communities derived from their carbon contents in surveyed areas was 202.7 gC m-2, with variations reflecting differences in community compositions. The biomass of Cnidaria, dominated by A. japonica, showed a positive correlation with carbon storage, whereas the biomass of Rhodophyta, primarily composed of coralline algae, showed a negative correlation. These variations in carbon storage among marine communities may result from species-specific carbon assimilation patterns, survival strategies, marine carbon cycling, and intra-community interactions such as competition and feeding.
The aim of this study was to evaluate the carbon storage capacity of broad-leaf forests in Republic of Korea through the analysis of studies related to carbon storage and carbon uptake, and to analyse the relationship between climatic factors affecting carbon storage capacity. We analysed the results of each previous study by summarising the research results of 55 previous studies collected through search, and organised the study area information and climate factors (elevation, average annual temperature, annual precipitation, etc.). And the carbon storage and net primary production of the above and below-ground and the whole plant were evaluated and the correlation with the climatic factors was statistically analysed. The analysis showed that the carbon storage of broad-leaved forests was positively correlated with altitude and negatively correlated with precipitation. These results mean that carbon accumulation in plants is more effective at higher altitudes with lower temperatures, and that broad-leaf forests are able to adapt and perform carbon storage functions in areas with low precipitation. Carbon uptake was negatively correlated with altitude and positively correlated with temperature. This means that the carbon absorption capacity of broad-leaved forests is greatly affected by temperature, and that the carbon absorption potential is greater in lowlands. Therefore, policies should be actively established to increase and preserve the carbon storage capacity of forests by considering the characteristics of the ecosystem functions of broadleaf forests and climate factors. The results of this study are expected to contribute to the understanding of the carbon cycle of broad-leaved forests and to the development of management measures, and to provide scientific data for carbon neutrality.
This study evaluated the feasibility of integrating the carbon storage of grasslands in Gangwon province into the InVEST carbon storage and sequestration model using large-scale digital land cover maps. Land cover maps from 1980, 1990, 2000, and 2010, obtained from the Environmental Geographic Information Service, were analyzed, with 28 maps examined for each year. Grassland carbon storage in Gangwon province was estimated through the InVEST software. The findings indicated that the grassland area showed an increase in 1990, followed by a declining trend, contrasting with the continuous reduction observed in actual managed grassland areas. Discrepancies between mapped and managed grassland areas were attributed to the classification criteria of the land cover maps, which included non-forage land uses such as golf courses, ski resorts, and green spaces, resulting in overestimations of grassland areas. To enhance accuracy, the adoption of land cover maps with refined grassland classification criteria is necessary. Accurate representation of grassland areas in land cover maps is critical for reliable estimation of grassland carbon storage using the InVEST software.
본 연구에서는 수소 자원의 활용도가 높아짐에 따라 수소 저장 용기의 내진 성능을 평가하기 위해 수소 저장 시설을 방문하여 현장 조사를 수행하였다. 외관 조사 중, 수조 저장 용기의 지지부에서 부식이 진행됨을 확인하였고, 이에 대한 대책안 으로 내부식성 재료인 CFRP로 대체하여 성능을 평가, 검증하였다. 이를 위해 현장 조사 결과를 바탕으로 상용 유한요소해석 프 로그램인 ABAQUS를 사용하였으며, 해석 결과 CFRP로 제작된 수소 저장 용기의 지지부는 강재 대비 약 12배 이상 뛰어난 성 능을 보였다. Hashin Damage Criteria를 기반으로 CFRP 지지부의 안전성 검토를 수행한 결과 최대 손상 지수가 0.065로 확인되 었다. 기초부 콘크리트의 경우, 쪼갬 및 휨 인장 응력에 대한 안전성을 검토하였으며, 허용 강도 대비 7~36%의 안전도를 보였 다. 이를 근거로 CFRP를 수소 저장 용기의 지지부에 적용하는 것은 합리적이며, 뛰어난 경제성을 보인다. 다만, 이러한 결과는 수치 해석에 의하므로 실규모 지진동 모사 시험을 통해 해석 모델의 신뢰성을 보충할 필요가 있다.
This study aimed to conduct a comprehensive assessment of the potential impact of deforestation and forest restoration on carbon storage in North Korea until 2050, employing rigorous analyses of trends of land use change in the past periods and projecting future land use change scenarios. We utilized the CA-Markov model, which can reflect spatial trends in land use changes, and verified the impact of forest restoration strategies on carbon storage by creating land use change scenarios (reforestation and non-reforestation). We employed two distinct periods of land use maps (2000 to 2010 and 2010 to 2020). To verify the overall terrestrial carbon storage in North Korea, our evaluation included estimations of carbon storage for various elements such as above-ground, below-ground, soil, and debris (including litters) for settlement, forest, cultivated, grass, and bare areas. Our results demonstrated that effective forest restoration strategies in North Korea have the potential to increase carbon storage by 4.4% by the year 2050, relative to the carbon storage observed in 2020. In contrast, if deforestation continues without forest restoration efforts, we predict a concerning decrease in carbon storage by 11.5% by the year 2050, compared to the levels in 2020. Our findings underscore the significance of prioritizing and continuing forest restoration efforts to effectively increase carbon storage in North Korea. Furthermore, the implications presented in this study are expected to be used in the formulation and implementation of long-term forest restoration strategies in North Korea, while fostering international cooperation towards this common environmental goal.
본 연구는 경남지역 대나무림에 대한 면적 및 입목축적량 산정과 함께 탄소저장량을 추정하기 위하여 수행되었다. 현재 산림청의 임업통계연보에는 대나무림에 대한 공간정보인 면적만 제시되고 있을 뿐, 입목축적에 대한 정보는 전혀 제공되고 있지 못하다. 따라서 본 연구에서는 최근에 만들어진 대나무 재적표를 활용하여 경남지역의 입목축적량을 계산하고, 여기에 탄소배출계수를 이용하여 탄소저장 량을 계산하였다. 대나무림에 대한 면적은 1/5,000 수치임상도에서 추출하였으며, 입목축적을 산정하기 위해 현지조사한 표준지 자료를 활용하였다. 표준지의 대나무는 개체목 별로 흉고직경과 수고에 재적표를 적용하여 표준지의 재적을 산정하였다. 경남지역 대나무의 공간분포 면적은 총 6,038ha로서, 전국 대나무림(20,262 ha)중 약 30%를 차지하는 것으로 나타났다. 경남지역 중에서는 하동군이 가장 많은 면적인 1,027 ha가 분포하는 것으로 나타났다. 경남지역의 시계열적인 분포면적 변화는 2013년 대비 2022년에 약 20.3% 감소하였으 며, 2019년 대비 약 0.4%가 감소하였다. 경남지역 대나무의 입목축적량은 2022년말 현재 148,510 ㎥인 것으로 계산되었으며, ha당 축적은 약 25 ㎥으로 나타났다. 그리고 경남지역 대나무 숲의 이산화탄소저장량은 287,277 tCO2 이었으며, ha당 저장량은 47.6 tCO2 인 것으로 나타났다.
For the commercialization of hydrogen energy, a technology enabling safe storage and the transport of large amounts of hydrogen is needed. Porous materials are attracting attention as hydrogen storage material; however, their gravimetric hydrogen storage capacity (GHSC) at room temperature (RT) is insufficient for actual use. In an effort to overcome this limitation, we present a N-doped microporous carbon that contains large proportion of micropores with diameters below 1 nm and small amounts of N elements imparted by the nitrogen plasma treatment. The N-doped microporous carbon exhibits the highest total GHSC (1.59 wt%) at RT, and we compare the hydrogen storage capacities of our sample with those of metal alloys, showing their advantages and disadvantages as hydrogen storage materials.
In this study, we have fabricated the phenolic resin (PR)/polyacrylonitrile (PAN) blend-derived core-sheath nanostructured carbon nanofibers (CNFs) via one-pot solution electrospinning. The obtained core-sheath nanostructured carbon nanofibers were further treated by mixed salt activation process to develop the activated porous CNFs (CNF-A). Compared to pure PAN-based CNFs, the activated PR/PAN blend with PR 20% (CNF28-A)-derived core-sheath nanostructured CNFs showed enhanced specific capacitance of ~ 223 F g− 1 under a three-electrode configuration. Besides, the assembled symmetric CNF28-A//CNF28-A device possessed a specific capacitance of 76.7 F g− 1 at a current density of 1 A g− 1 and exhibited good stability of 111% after 5,000 galvanostatic charge/discharge (GCD) cycles, which verifies the outstanding long-term cycle stability of the device. Moreover, the fabricated supercapacitor device delivered an energy density of 8.63 Wh kg− 1 at a power density of 450 W kg− 1.
In today’s world, carbon-based materials research is much wider wherein, it requires a lot of processing techniques to manufacture or synthesize. Moreover, the processing methods through which the carbon-based materials are derived from synthetic sources are of high cost. Processing of such hierarchical porous carbon materials (PCMs) was slightly complex and only very few methods render carbon nano-materials (CNMs) with high specific surface area. Once it is processed, which paves a path to versatile applications. CNMs derived from biological sources are widespread and their application spectrum is also very wide. This review focuses on biomass-derived CNMs from various plant sources for its versatile applications. The major thrust areas of energy storage include batteries, super-capacitors, and fuel cells which are described in this article. Meanwhile, the challenges faced during the processing of biomass-derived CNMs and their future prospects are also discussed comprehensively.
Transition-metal phosphides (TMPs), a promising anode material for lithium-ion batteries (LIBs), are limited in application because of its serious volume effect in the cycle. In this work, a simple electrospinning strategy was proposed to restrict the grain size of CoP nanocrystals by nano-confined effect of carbon nanofibers with ligands. The addition of ligands not only could realize the uniform dispersion of CoP nanocrystals, but also strengthen the bond between the metals and carbon nanofibers. As a result, the CoP/CNF composite exhibits excellent lithium storage performance, and its reversible specific capacity could reach 1016.4 mAh g− 1 after 200 cycles at a current density of 200 mA g− 1. The research is anticipated to provide a new idea for the preparation of anode materials for lithium ion batteries.
We deduced the proper estimation methodology for the amount of carbon sequestration by damaged trees for Environmental Impact Assessment (EIA). The nine development projects related to renewable energy, damaged trees occur, assessment status and used method of evaluating the carbon storage of damaged trees were summarized. And after re-calculating the carbon storage of damaged trees through allometric equations, the difference between the two groups, re-calculated the damaged trees carbon storage and the damaged trees carbon storage in the report, was validated. As a result, damaged trees carbon storage in words was more than the re-calculated damaged trees carbon storage, and it was statistically significant (p<0.005). This result means that the existing method for calculating damaged tree carbon storage is overcalculated. It was judged that it was necessary to improve the calculation method. Therefore, allometric equations suitable for each dominated-tree species should be used when calculating the damaged tree carbon storage. Furthermore, we propose to establish a carbon storage calculation system based on actual data from the ecosystem so that researchers can efficiently and accurately the damaged trees carbon storage. Key words: damaged vegetation, carbon sequestration, allometric equation, environmental impact
In preparation of porous carbon materials microwave oven brightening is one of the warming modes used ever. The various procedures that take place in microwave combustion process include carbonization, incitation, and recovery and thus carbon is defined. This paper compares ideal conditions of traditional warming methods, as well as their implementation potential, losses, and specifications. This porous carbon with heat treatment possesses various properties and they are well suited for energy applications which require constrained space such as hydrogen storage in solid-state and supercapacitors. The enhanced properties are chemical and thermal stability, ready availability, low framework density and ease of processability. The recent trend in class of porous carbons is Activated Carbons that are employed traditionally as adsorbents or catalyst supporters but currently, they found potent applications in fabricating for hydrogen storage materials and supercapacitors. These activated carbons are much enhanced form in class of porous carbon materials and they possess the capability to enable hydrogen economy, where the energy carrier is hydrogen. Therefore, the utility of activated carbons as a source for energy storage experiences a rapid growth at current trend and they possess significant advances. This investigation is based on detailed cost development data and electrical imperativeness applications.
Activated non-graphitizable hard carbon using orange peel with mesoporous structure has been prepared by pyrolyzation at 700, 800, 900 °C using chemical activation method. The activated orange peel-derived hard carbon has been characterized for its mesoporous and disordered structure. TG-DSC gives the information for the changes about sample composition and thermal stability of the materials. Increasing the carbonization temperature for orange peel precursor using NaOH as activating agent, elevates the pore diameter, which thereby facilitating the insertion of Na+. Raman and X-ray diffraction confirms the presence of disordered carbon. The surface morphology of the material was analyzed by scanning eletron microsope and nitrogen ( N2) adsorption and desorption analysis give the morphology, mesopore size (3.374, 3.39 and 4 nm) and surace area (60.164, 58.99 and 54.327 m2/g) of the orange peel-derived hard carbon. Hence, this work strongly evidences that the biomass-derived hard carbon with good porosity and paves way of superior electrochemical performance for emerging sodium ion batteries.
The high level of lithium storage in synthetic porous carbons has necessitated the development of accurate models for estimating the specific capacity of carbon-based lithium-ion battery (LIB) anodes. To date, various models have been developed to estimate the storage capacity of lithium in carbonaceous materials. However, these models are complex and do not take into account the effect of porosity in their estimations. In this paper, a novel model is proposed to predict the specific capacity of porous carbon LIB anodes. For this purpose, a new factor is introduced, which is called normalized surface area. Considering this factor, the contribution of surface lithium storage can be added to the lithium stored in the bulk to have a better prediction. The novel model proposed in this study is able to estimate the lithium storage capacity of LIB anodes based on the porosity of porous carbons for the first time. Benefiting porosity value (specific surface area) makes the predictions quick, facile, and sensible for the scientists and experts designing LIBs using porous carbon anodes. The predicted capacities were compared with that of the literature reported by experimental works. The remarkable consistency of the measured and predicted capacities of the LIB anodes also confirms the validity of the approach and its reliability for further predictions.