큰연영초는 백합과의 다년생 식물이며, 정원용으로 큰 관상적 잠재력을 가지고 있다. 그러나 한반도에서는 희귀식물(EN 범주) 로 알려져 있다. 자연 환경에서 종자 휴면 타파의 phenology를 조사하였다. 큰연영초는 초기 종자길이의 10% 미만인 미성숙배 를 가지고 있었다. 미성숙배는 2013년 7월 하순부터 2014년 6월 하순까지 거의 자라지 않았다. 그러나 2014년 7월 초순부 터 8월 중순까지 빠르게 신장하였다. 종자는 8월 1일부터 발아 하기 시작했고, 대부분의 종자는 2014년 8월 하순에 발아했다. 따라서 종자가 탈리 된 후 발아하는 데 약 1년이 걸렸다. 뿌리는 두 번째 가을 동안에 발달했고, 두 번째 겨울철 저온기간이 지난 후, 2015년 봄에 유묘가 출현하였다. 따라서 자연 환경에서 휴 면이 깨지고 유묘가 출현하는 데 약 2년이 걸렸다. 기내의 배양 온도, 저온 처리 및 GA3 처리 실험에서, 종자는 8주 동안 전혀 발아하지 않았다. 따라서 큰연영초의 종자는 유묘을 생산하기 위해 ‘저온(첫 번째 생리적 휴면을 타파) → 고온(미성숙배의 신 장 및 발아) → 저온(배축휴면을 타파)’의 순차적인 온도의 변화가 필요했다. 결과적으로 큰연영초 종자는 deep simple double morphophysiological dormancy (MPD)를 가지고 있다는 결론을 내릴 수 있다.
갯취(Ligularia taquetii)는 국화과에 속하는 한반도 특산식물 로, 관상가치가 뛰어나지만 한국 관속식물 적색목록에서 취약종 (VU)으로 분류되며 보존이 필요한 종이다. 본 연구는 갯취 종자 의 휴면 유형을 분류하고, 후숙 처리 효과를 확인하여 보존을 위한 기초 자료를 제공하고자 하였다. 2022년과 2023년에 채종한 종자를 사용하여 온도, 저온 습윤, GA3, 후숙 처리 실험을 진행하였다. 갯취 종자는 수분을 원활하게 흡수하였고, 모체에 서 탈리될 때 배가 형태적으로 완전히 발달한 상태였다. 4, 15/6, 20/10, 25/15℃에서 배양한 결과, 4주간 발아하지 않았 기 때문에 생리적 휴면(physiological dormancy, PD)으로 분 류하였다. 후숙 처리를 하지 않거나 6주간 후숙 처리만 한 종자 의 발아율은 20% 미만이었으나, 후숙 처리 후 8주 동안 저온 습윤 처리한 종자의 발아율은 70%로 증가하였다. 또한, 후숙 처리 후 GA3 100 mg·L⁻¹ 농도 처리 시 49% 발아하였다. 따라 서, 갯취 종자의 PD를 타파하기 위해 후숙 후 저온 습윤 또는 GA3 처리가 효과적인 것으로 보인다.
본 연구는 한국 관속식물 적색목록(Korean National Red List)을 기준으로 정보부족(Date Deficient, DD) 종으로 분류되 어 있는 한반도 고유 식물 변산향유(Elsholtzia byeonsanensis M. Kim)의 유전자원 보존과 원예적 활용을 위해 수행되었다. 종자의 발아를 위한 적정 조건을 알아보고자 종자의 기본 특성 을 조사하고 수분 흡수율을 조사하였으며 온도, 광조건, 저온 습윤 처리, GA3 처리에 따른 발아 특성을 조사하였다. 종자의 내・외부 형태를 관찰하였을 때 완전히 성숙한 배를 가지고 있어, 형태적 휴면(morphological dormancy, MD)은 없다고 판단 하였다. 또한 수분 흡수 실험의 결과 3시간 만에 80%를 초과하 였기에 물리적 휴면(physical dormancy, PY)도 없다고 판단 하였다. 4, 15/6, 20/10, 25/15℃의 4가지 온도에서 종자 발아 를 관찰하였을 때 발아율은 각각 23.37, 71.24, 72.16, 70.93% 였다. 광조건을 달리하여 25/15℃에 배양하였을 때, 명조건에 서 암조건 보다 발아율 유의하게 높았다(p<0.001). 4℃에서 0, 4, 8, 12주간 저온 습윤 처리 후 25/15℃에 배양하였을 때, 발아율이 각각 63.75, 76.28, 83.33, 75.01%로 8주간 저온 습윤 처리 한 종자의 발아율이 가장 높았다(p<0.05). 또한 저온 습윤 처리를 한 종자는 저온 습윤 처리 기간 중에도 발아하는 모습이 관찰되며 발아소요일수가 단축되었다. 그러나 GA3를 0, 10, 100, 1000mg·L-1의 농도로 종자에 처리하였을 때, 농도에 따른 발아소요일수와 발아율의 유의한 차이는 없었다. 따라서 변산향유 종자는 대부분 비휴면(non-darmanct, ND) 종자이 나 일부 적정 조건에서도 발아하지 않은 종자의 경우, 개체군 수준에서 휴면이 있을 수 있다. 또한 종자의 발아 특성은 기존의 동일 속이나 종 내의 연구 결과와 다를 수 있음을 고려해야한다.
조팝나무속 식물은 장미과에 속하는 다년생 관목으로 우리나 라 전역에 자생하는 한국 고유 식물이다. 조팝나무속 식물은 관상적으로나 약용적인 가치가 있는 중요한 자원 식물 중에 하나라고 여겨진다. 본 연구에서는 조팝나무속 식물 중 조팝나무 (Spiraea prunifolia), 꼬리조팝나무(S. salicfolia), 당조팝나무 (S. chinensis)를 대상종으로 선정하여 종자의 휴면타파와 발아 특성을 구명하였다. 종자의 내・외부 형태는 종자의 길이와 배형 태를 관찰하였으며, 조팝나무, 꼬리조팝나무, 당조팝나무 종자 의 길이는 각각 약 2.21, 2.86, 2.01mm로 나타났다. 조팝나무 는 변온 조건에서 25/15, 20/10, 15/6, 5℃ 처리에서 각각 100, 100, 100, 58.2%로 5주 이내에 최대발아률까지 도달하였 으며, 저온층적처리에서도 경우 0, 4, 8, 12주에서 각각 100.0, 93.3, 90.2, 84.4%로 모든 층적처리에서 발아율이 높게 나타났 다. 저온층적처리와 GA3의 농도처리별 통계적인 차이가 나타나 지 않았다. 당조팝나무에서도 조팝나무와 동일한 양상으로 변온 조건에서 모든 처리에서 5주 이내에 최대발아률(100%)까지 도달 하였으며, 0, 4, 8, 12주에서 각각 100.0, 100.0, 90.6, 90.6% 로 모든 처리에서 발아율이 높게 나타났으며, GA3의 농도처리 별 통계적인 차이가 나타나지 않았다. 하지만 꼬리조팝나무는 5주째에 25/15, 20/10, 15/6℃ 각 온도 범위에서 14.0, 16.5, 5% 정도 발아하여 발아율이 매우 저조했다. 처리 후 20주 정도 되었을 때 상대적으로 온도가 낮은 15/6, 20/10℃ 처리구에서 50% 이상으로 발아율이 향상되었다. 그리고 GA처리를 통해 발아율이 향상되었다. 위 결과로 보았을 때 조팝나무속 2종의 식물과 다르게 꼬리조팝나무는 휴면이 있다고 판단되며, 종자 발아온도 조건의 범위가 상대적으로 좁다고 판단된다. 따라서 조팝나무속 식물 3종 중에 조팝나무와 당조팝나무는 휴면이 없 다고 판단되며, 꼬리조팝나무는 생리적 휴면으로 분류하였으며, 세부적으로 non-deep의 휴면 유형을 가졌다고 판단된다.
개회나무(Syringa reticulata)는 수수꽃다리속 물푸레나무과 에 속하는 낙엽활엽교목으로 관상 및 약용 등으로 사용되는 가 치가 높은 식물이다. 본 연구는 개회나무 종자의 휴면타파와 발아특성을 구명하여 대량증식 체계를 확립하고자 하였다. 이에 따라 종자내외부특성, 수분흡수률, 변온처리(25/15, 20/10, 15/6, 5℃), 저온층적처리(0, 4, 8, 12주), 생장조절제 농도 (GA3 0, 10, 100, 1000mg·L-1)처리하여 확인하였다. 그 결과 배는 완전히 성숙되어 있는 형태였으며, 수분흡수률은 초기대비 약 39.2% 증가하였다 변온 처리조건에서는 15/6℃ 조건에서 발아율이 69.2%로 가장 높았으며, 0주 층적처리에서 가장 높은 발아율을 나타낸 것으로 보아 변온의 5℃ 처리의 결과와 동일한 양상으로 저온은 발아에 큰 영향을 미치지 않았다. 생장조절제 처리에서는 상대적으로 GA3 농도가 높은 100, 1000mg·L-1 처리에서 발아률이 통계적으로 높게 나타났다. 위 결과를 보아 개 회나무는 생리적 휴면을 가지고 있으며, 세부적으로 non-deep PD라고 판단된다.
Iris laevigata, which belongs to the Iridaceae, is now designated as an “endangered” (EN) grade by Korea Forest Service because it does not have many natural sites known for its reckless development and damage to its natural habitats. This study was carried out to establish the propagation protocol from seed to restore the native habitat of the I. laevigata and to utilize it for ornamental purposes. Basically, the appearance and internal structure of seeds were observed and imbibition experiments were conducted. Germination rate was measured by cold stratification experiment, after warm followed by cold stratification experiment, and GA3 treatment experiment. The seeds had underdeveloped embryos, which had grown to about 25% of those of fully matured seed before germination. In the controlled laboratory experiment, after cold stratification at 5°C for 0, 4, 8, or 12 weeks, the seeds germinated to 0, 11.7, 43.4, or 51.7%, respectively, after 4 weeks of incubation at 25°C. After warm stratification (25°C, 8 weeks) followed by cold stratification for 0, 4, 8, or 12 weeks, the seeds germinated to 0, 51.7, 85.0, or 88.3%, respectively, after 4 weeks of incubation at 25°C. GA3 treatment did not overcome the dormancy. Our study determined the dormancy type of I. laevigata seed. Imbibition experiments showed that there was no physical dormancy, and it was also found that there was an underdeveloped embryo when it was observed that the embryo was growing according to the period of incubation. A nd t he e m bryo grew a t relatively w arm temperatures. It is concluded that the seeds of I. laevigata have morphophysiological dormancy (deep simple MPD). This is the first report to determine the dormancy type in seeds of this valuable ornamental plant.
본 연구는 제비꽃과 남산제비꽃 종자의 종자휴면을 구명하고 종자 저장에 따른 발아 특성을 알아보는 것을 목표로 하고 있다. 먼저 장기 저장 종자를 대상으로 다양한 배양 온도, 저온층적처리, GA3처리를 수행하였다. 휴면의 유무를 판단하기 위해 종자를 25/15, 20/10, 15/6°C 온도에서 배양하였고 제비 꽃 종자의 최종 발아율이 각각 86, 66, 66%으로 나타났다. 이는 제비꽃 종자에 휴면이 없는 것으로 여겨진다. 남산제비꽃은 최종 발아율이 50% 이하이며, 4주 이내에 거의 발아를 하지 않아 생리적휴면이 있다고 판단된다. 남산제비꽃 종자에 GA3 1000mg・L-1를 처리했을 때 최종 발아율이 100%로 나타났다. 또한 저온층적처리 실험 결과 남산제비꽃 종자가 저온 층적처리 기간이 증가할수록 최종발아율도 증가하였다. 앞의 실험은 장기 저장이 되었던 종자를 사용한 것이며 채종 직후의 제비꽃, 남산제비꽃의 발아양상도 살펴보았다. 제비꽃은 25/15°C에서 1주 만에 모두 발아를 하여 종자 휴면이 없는 것을 다시 확인하였다. 장기 저장 종자에 비해 평균발아일수가 줄어들고 발아속도가 증가하여 제비꽃 종자는 장기 저장 중에 종자의 활력이 감소됨을 알 수 있었다. 바로 채종한 남산제비 꽃 종자도 4주만에 발아가 거의 이루어지지 않고 저온층적처리를 통해 발아율이 향상 되는 것으로 보아 생리적휴면을 가지고 있다고 재확인되었다. 따라서 제비꽃과 남산제비꽃은 장기 저장에 따라 종자의 휴면 유형은 변하지 않지만 종자 활력 에 따라서 최종발아율, 평균 발아일수, 발아속도, 발아균일도가 달라질 수 있다.
본 연구는 제비동자꽃의 대량번식을 위한 효과적인 발아 조건을 선발하고자 수행되었다. 제비동자꽃 종자는 저온습윤 처리(5°C, 0, 4, 8, 12, 16주), GA3 처리(0, 500, 1000mg・L-1), 프라이밍 처리(0.1M, 0.2M의 NH4NO3, K2HPO4, KCl, KNO3)를 하였다. 모든 종자는 25°C, 12시간 광조건(40μmol・m-2 ・s-1)에 서 발아 실험이 진행되었으며, GA3 처리구는 비닐온실(평균 23.4°C)에서도 비교실험이 진행되었다. 저온습윤 8주 처리구 에서 20.4%로 가장 높은 발아율을 나타냈으며, 12주 이상의 저온습윤 처리는 오히려 제비동자꽃의 발아율을 감소시켰다. GA3 0, 500, 1000mg・L-1 처리된 종자는 25°C에서 각각 3.3, 44.0, 62.0%, 비닐온실에서 각각 5.3, 16.7, 42% 발아하였다. 제비동자꽃 종자는 GA3 농도가 높아질수록 발아율이 증가하였다. 또한 제비동자꽃 종자는 0.2M KNO3-프라이밍 처리구에서 가장 높은 발아율(54.7%)을 나타냈으며, 평균발아소요일수는 처리 간 유의성을 보이지 않았다. 이상의 결과로 효과적인 제비종자꽃 종자 번식을 위한 전처리 조건으로 24시간 GA3 1000mg・L-1 침지 처리 또는 0.2M-KNO3 프라이밍 처리를 추천한다.
섬쥐똥나무는 울릉도의 숲 지대에 자생하는 한국 특산식물 이다. 본 연구는 섬쥐똥나무 종자의 휴면유형을 분류하기 위 하여 GA3 처리(0, 10, 100, 1000mg・L-1), 저온층적처리(5℃에 서 0, 4, 8, 10주), move along test를 수행하였다. 각각 처리 한 종자는 25℃로 유지되는 생장상에서 25μmol・m-2 ・s-1의 광 도로 16시간 일장조건에서 배양하였다. 섬쥐똥나무 종자는 배 가 완전히 성숙한 상태로 탈리되며, 불투수성이 존재하지 않 았지만, 무처리 상태에서 4주동안 발아하지 않았다. 따라서 섬쥐똥나무 종자는 생리적 휴면을 가지고 있는 것으로 판단하 였다. GA3 처리실험 결과 각 처리(0, 10, 100, 1000mg・L-1)별 로 최종발아율은 각각 30.0, 40.0, 53.3, 38.3%를 기록하였다. 저온처리 실험결과 모든 처리구에서 저온이 끝나고 15-16주의 시간이 지난 다음 발아를 시작하였다. 온도 처리별 실험결과 15℃처리에서 6주만에 발아를 시작하여 17주차에 약 88.3%, 20℃ 처리에서는 13주차에 발아를 시작하여 19주차에 약 Fig. 6. Germination of Ligustrum foliosum seeds as affected by light conditions. Seeds were incubated at 15℃ under light (16 h) or dark conditions during 11 weeks after soaking seeds in 1000 mg·L-1 GA3 solution for 24 h. Control seeds were soaked in distilled water for 24 h. Error bars indicate mean ± SE of three replications. www.ijfs.org Flower Res. J. (2017) 25(3) : 124-132 131 98.8%, 25→20→15℃처리는 15주차에 발아를 시작하여 17주 차에 약 98.8%, 5→15→20℃처리는 16주차에 발아를 시작하 여 20주차에 약 31.6%, 25℃에서는 17주차에 발아를 시작하 여 20주차에 약 38.3%의 최종발아율을 기록하였다. 반면, 5℃ 처리에서는 발아가 이루어지지 않았다. 위 결과들을 종합해보 면 섬쥐똥나무 종자는 생리적 휴면을 가지고 있고, 세부 유형 으로 non-deep PD 유형을 가지고 있는 것으로 판단된다.
Kadsura coccinea (Lem.) A.C. Smith is used as a medicinal plant and cosmetic material in China and Southeast Asia. To mass-produce Kadsura coccinea seedlings, the effects of gibberellic acid (GA3) and cold stratification treatments on seed germination were investigated. Seed germination rate with GA3 treatment was most effective at concentrations of 250 or 500 mg/L. With respect to mean germination time (MGT), mean daily germination, and T50 (days to reach 50% seed germination), the germination-promoting effect was improved as the concentration of GA3 increased. Stem growth of seedlings was the highest following GA3 treatments of 250 and 500 mg/L, and the growth promoting effect gradually decreased as the concentration of GA3 decreased. Root growth was stimulated at GA3 concentrations of 250–1,000 mg/L. Examination of the effect of stratification treatment for 15, 30 and 60 days at temperatures of 0, 5 and 10℃ on the germination rate revealed that the most stratification treatment temperature was 10℃, and the results improved with longer treatment periods. Altogether, GA3 and stratification treatments improved the seed germination rate, shortened the MGT, improved germination uniformity, and produced healthy seedlings.
Background: Dehisced ginseng seeds need to be stored at cold temperatures for around 3 months to break their physiological dormancy, and thus, to aid in gemination. In the presence of high moisture in such an environment, seed spoilage and pre-germination may lower seed quality and productivity. To improve seed quality during cold-stratification, the effects of seed dehydration and temperature were tested. Methods and Results: In early December, dehisced ginseng seeds were dehydrated at 4 different levels and stored at 2℃- 2℃, and –20℃ for 3 months. Germination was carried out on the filter papers moistened with distilled water; emergence of root, shoot, and seed spoilage were assessed. Seed viability was examined by the tetrazolium test. More than 90% of the seeds stored at 2℃ and –2 ℃ without drying or endocarp dehydration germinated, but seeds that were dehydrated to have a moisture content (MC) below 31% showed poor germination and lost their viability. In addition, the seeds stored at –20℃ failed to show effective germination. Conclusions: Seed storage after endocarp dehydration might help to improve seed quality and increase seedling's ability to stand during the spring-sowing of ginseng.
Background : Upon harvest in the summer, seeds of Panax ginseng are unmatured and need further maturation, dehiscence and cold-stratification, for germination. For the cold-stratification, the seeds should be stored in the cold temperature for 90-100 days, however no further description about the storage condition have been described even though there have been many problems in emergence rate and quality of ginseng in the spring-sowed filed. Methods and Results : Thus here we tested 3 different storage temperature(2℃, -2℃, and – 20℃) in combination of 4 different seed water content(59%, 54%, 31%, and 7%) as cold-stratification condition. After 100 days of storage, seeds were placed on the filter paper after watering with distilled water in the petri dish and incubated at 10℃. Fifty percent of seeds stored at 2℃ with 59% water content had already germinated even in the storage room before germination test. Seeds with 59% and 54% water content stored at 2℃ and –2℃ germinated in a similar rate, but emergence of above ground part was higher in the seeds with 54% water content. Seeds with 31% and 7% water content stored at 2℃ and –2℃ showed low germination rate, because of fail in stratification or death. Seeds stored at –20℃ scored even lower germination rate and fail in emergence of above ground part. Conclusion : Seed water content and temperature during the cold-stratification period of ginseng seeds affected on the seed viability and germination rate, thus control of seed water content and storage temperature might improve the emergence rate of spring-sowed ginseng filed.
Seeds of burcucumber were treated with accelerated aging, cold-stratification, and light quality illuminated during desiccation to enhance their germination and seedling emergence. The germination was increased by aging and cold-stratification although the latter treatment showed greater effectiveness than the former one. In the combined treatment of aging 6 days at 45~circC and cold-stratification, the germination was promoted under longer period of cold-stratification to reach nearly 100% in 3 week cold-stratification on the ninth day from sowing. In the sequentially combined treatment of aging, cold-stratification, and light quality during 24 hour desiccation at 35~circC , no-stratified seeds showed the highest rate in red light treatment but the lowest in far-red light. This implies that the phytochrome action run during the desiccation of imbibed seeds. The red light exposure during drying for the cold-stratified seeds after aging accelerated the germination even more than the dark treatment and germinated 100% on the next day of sowing. It is concluded that the sequential treatment of aging, cold-stratification, and red light illumination during desiccation can highly promote percentage and speed of burcucumber seed germination.
생약재로 이용되고 있는 활나물은 항암효과가 밝혀져 그 이용이 기대되나 종자발아가 불량하여 재배가 어려운 식물이다. 따라서 GA3, 저온, KNO3, acetone처리가 활나물의 종자발아에 미치는 영향을 구명하여 앞으로의 재배연구의 기초자료를 얻고자 본 연구를 실시하였던 바 그 결과를 다음과 같다. 1. 활나물 종자의 발아율은 GA3 처리시에는 0.1 mM에 12시간 암상태에서, 저온처리시에는 3℃에서 1주간 처리하는것에서 가장 높았다. 2. 발아율은 KNO3 처리시에는 400 mM에 6시간, acetone 처리시에는 200 mM에 6시간 처리하는 것에서 가장 높았으며, 이들 처리결과가 GA3 또는 저온처리의 최적결과보다 양호하였다. 3. 포장출현율은 200 mM의 acetone 용액에 6시간 처리하는 것보다 400 mM의 KNO3에 6시간 처리하는 것에서 높은 것으로 조사되어 활나물 종자처리는 KNO3를 이용하여 암상태에서 처리하는 것이 바람직한 처리방법으로 평가되었다.
본 연구는 시호 종자를 파종했을 때 발아율이 낮고 발아 소요기간이 길어 입모확보가 문제점으로 대두되어 발아율을 향상시키고 단기(短期) 동시 발아시킬 방안을 모색하고자 시호 종자의 발아특성에 대하여 시험한 결과를 요약하면 다음과 같다. 1. 시호종자의 크기는 입경 2.0~3.0mm 범위이었으며, 평균입경은 삼도시호가 3.0mm 재래시호가 3.1mm이었다. 대립종자일수록 발아기간이 짧고 발아율이 높았다. 2. 시호 종자의 선종에 알맞는 비중은 1.05로 판단되었으며 비중선에 의해 70% 이상의 발아율을 기대할 수 있었다. 3. 시호 종자의 등숙기간은 최소 60일 이상되어야 하며 80일간의 저온 층적 처리에 의해 발아율은20% 이상 증가하였다.