검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 160

        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 코이어 배지를 이용한 오이 수경재배에서 배지 포 수액의 종류와 정식 방법에 따른 생육 및 생산성을 검증하여 가장 효율성이 높은 재배 방법의 선발을 위하여 수행되었다. 포수액은 배양액(S)과 원수(W), 육묘는 암면큐브 육묘(RC), 암면 플러그묘(RP), 슬라브 직파(DS)로 하였다. 재배 기간을 동일하게 하기 위하여 기준일은 파종일로 하였다. 초기 생육 량은 S 처리에 서 유의하게 높았으나, 생육기간이 길어질수록 처리 간 차이가 감소하였다. 정식 방법과 생육량 간에는 관계 성이 나타나지 않았으나, 포수 방법에 따라 동일한 정식방법 간에도 다른 결과가 나타났다. 생산성도 동일한 경향으로 초 기 수확기인 파종 후 6-8주까지는 S 처리에서 수확과의 수가 유의하게 많았으며, 이후 동일한 기간 수량의 격차가 해소되 었다. 누적 수량은 초기 수확량의 차이로 인하여 S 처리에서 유의하게 높았다. 식물체의 생육과 과실 생산성은 유사한 경 향으로 선형적인 관계성을 나타내었다. 정식 방법 간에는 상 관성을 나타내지 않았으나, S의 DS 처리가 초기 근권부 안정 적인 양·수분 공급으로 초기 생육 및 수량이 가장 많은 경향이 었다. 따라서 S 처리한 배지에 DS 방식이 식물체의 생육 및 생 산성에 가장 유리할 뿐만 아니라 재배단계 간소화를 통한 노 동력 및 생산 원가 절감으로 경제성 측면에서도 기여할 수 있 을 것으로 생각된다.
        4,000원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The presence of technological voids in deep geological repositories for high-level radioactive nuclear waste can have negative effects on the hydro-mechanical properties of the engineered barrier system when groundwater infiltrates from the surrounding rock. This study conducted hydration tests along with image acquisition and X-ray CT analysis on compacted Korean bentonite samples, which simulated technological voids filling to investigate the behavior of fracturing (piping erosion) and cracking deterioration. We utilized a dual syringe pump to inject water into a cell consisting of a bentonite block and technological voids at a consistent flow rate. The results showed that water inflow to fill technological voids led to partial hydration and self-sealing, followed by the formation of an erosional piping channel along the wetting front. After the piping channel generated, the cyclic filling-piping stage is characterized by the repetitive accumulation and drop of water pressure, accompanied by the opening and closing of piping channels. The stoppage of water inflow leads to the formation of macro- and micro cracks in bentonite due to moisture migration caused by high suction pressure. These cracks create preferential flow paths that promote longterm groundwater infiltration. The experimental test and analysis are currently ongoing. Further experiments will be conducted to investigate the effects of different dry density in bentonite, flow rate, and chemical composition of injected water.
        5.
        2023.05 구독 인증기관·개인회원 무료
        A disposal research program for HLW has been carried out since 1997 with the aim of establishing the preliminary concept of geological disposal in Korea. The preliminary studies were conducted by conducting manufacture and installation of an in-situ nuclide migration system in KAERI Underground Research Tunnel (KURT). Nuclides could be released from a deep underground disposal facility due to thermal and physicochemical changes into the surrounding environments. Understanding on the migration and retardation processes of nuclides in a fractured rock is very important in the safety assessment for the radioactive waste disposal. In this study, we evaluated fracture filling minerals and aperture distribution (3D map) along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental set-up with the granite block with dimensions of 100×60×60 (cm). A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.095 mm. The fracture volume is about 55 ml. Also the 137Cs sorption (batch test) distribution coefficients increased to Kd = 800~860 mL/g in the fractured rock because of the presence of secondary minerals formed by weathering processes, compared to the bedrock (Kd = 750~830 mL/g). These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
        8.
        2022.10 구독 인증기관·개인회원 무료
        In this study, we evaluated fracture filling minerals and aperture distribution along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental setup with the granite block with dimensions of 100×60×60 (cm). The fracture is sealed with rock silicone rubbers when it intersects the outer surfaces of the block and the outer surfaces are coated with the silicone to prevent loss of water by evaporation. Nine boreholes were drilled of orthogonal direction at the fracture surface. A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.082 mm. The fracture volume is about 49 ml. These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
        9.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 교량받침 교체를 위한 에폭시 주입 공법을 제시하였다. 에폭시 주입 공법의 성능 평가를 위하여, 에 폭시 주입성 실험 및 통공앵커의 인발실험을 수행하였다. 에폭시 주입성 실험은 빈 공간을 갖고 있는 콘크리트 블록 내에 통공 앵커를 이용하여 에폭시를 주입하고, 콘크리트 블록을 절단한 후, 주입성능을 육안으로 관찰하였다. 또한, 인발실험은 2가지 형태의 통공앵커를 콘크리트 블록 내에 삽입하여 수행하였으며, 2가지 형태의 통공앵커에 대한 인발실험 결과를 비교하고, 케 미컬 앵커의 인발강도와도 비교하였다. 실험 결과 통공앵커는 교량받침 교체공사를 위한 에폭시 주입성과 인발성능이 우수한 것으로 나타났다.
        4,000원
        10.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Valves are one of the indispensable components in modern industry. Filling and de-pressure connectors in rocket valves used for space launch vehicles are very important parts for smooth fluid supply. For this reason, an optimized design that can improve efficiency, miniaturization, weight reduction, and safety of the valve at the same time is required. In this work, flow analysis and structural analysis were performed through 3D modeling using computational numerical analysis for open type filling and de-pressure valves. As results, the flow velocity and pressure distribution of the fluid were analyzed through the flow analysis of valve, and stress distribution was conducted in structural analysis. Through this study, it is consequently expected to provide valves of various specifications by performing production and performance test evaluation of development prototypes.
        4,000원
        16.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.
        4,000원
        17.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        토목섬유 튜브 설계는 토목섬유와 충진재 간의 수리학적 양립성으로 충진압과 토질특성 및 토목섬유 특성, 설치되는 지반의 기초 특성 등과 같은 많은 요소에 의해 성능이 영향을 받기 때문에 매우 복잡하다. 본 연구에서 개발된 하이브리드 토목섬유 튜브는 원주를 다양하게 토목섬유재질로 구성하여 배수성능과 충진능력을 최적화 할 수 있었다. 실험적으로 확인하고자 제작된 복합재질의 토목섬유백에 준설토를 충진시키는 스케일모델시험을 실시하였다. 제작된 4개의 토목섬유백을 활용한 실험을 통하여 보유성능과 충진시간 및 간극수압 등이 평가되었다. 최종적으로 토목섬유의 상호간 재질의 구성방법의 변화 및 원주면 길이의 변화 등으로 토목섬유의 성능을 최적화한 연구결과가 제시되었다.
        4,000원
        18.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between Al3Ni foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.
        4,000원
        20.
        2018.04 구독 인증기관·개인회원 무료
        During insect development from embryo to adult, airway clearance in tracheal system occurs episodically each time the molt is completed by performance of the ecdysis sequence. We found that the neuropeptide Kinin is required for normal respiratory fluid clearance or “tracheal air-filling” in fruit fly Drosophila larvae. Disruption of Kinin signaling leads to defective air-filling during all larval stages. Targeted Kinin receptor silencing in tracheal epithelial cells also shows tracheal air-filling defect. On the other hand, promotion of Kinin signaling in vivo through peptide injection or Kinin neuron activation induces premature tracheal collapse and air-filling. Moreover, direct exposure of epithelial cells in vitro to Kinin leads to calcium mobilization in tracheal epithelial cells. Our findings strongly implicate the neuropeptide Kinin as an important regulator of airway clearance via intracellular calcium mobilization in tracheal epithelial cells of fruit fly Drosophila.
        1 2 3 4 5