검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 135

        81.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate)(TBOP) were synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-S, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. Network structured PU flame-retardant coatings (APHD) were prepared by curing the synthesized benzoic acid modified polyesters containing phosphorus (APT B - 5 , -10, -15) with hexamethylene diisocyanate (HDI)-timer. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures. With the introduction of BZA, the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210~313 seconds, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.
        4,500원
        83.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chlorine-containing modified polyester polyols were synthesized by two-step condensation reactions. Intermediate was synthesized by the esterification of monochloroacetic acid with trimethylolpropane in the first step. Polycondensation of the intermediate (MCAOs), 1,4-butanediol, and trimethylolpropane with adipic acid was carried out. Two-component polyurethane (PU) coatings were prepared by blending MCAOs and IPDI-isocyanurate. There new flame-retardant coatings showed various properties comparable to other non-flame-retardant coatings. They were superior to flammable coatings from the experimental results showing rapid and 10 to 13 hours of pot-life. Coatings with 30wt% monochloroacetic acid was not flammable by the vertical flame retardancy test.
        4,000원
        85.
        2004.11 구독 인증기관 무료, 개인회원 유료
        It compared quality characteristics for the stone surface treatment system and its products. With the result, the flame burner equipment was mainly used to the surface treatment of granite, but it occurred greatly the high temperature, the rock fragment, the noise and dust. For the other side, the whetstone polishing machine for the polishing was a maintenance for the specific physical properties of stone, and it did not occur the stone fragment and the dust. The durability of the stone products due to the flame burner was investigated with that it falls to 20~25% more than the surface treatment by the whetstone polishing. Share's hardness of the polishing products in the durability test showed more greatly index than the flame burner and conventional product. The polishing products of Pochon stone in the case of the abrasion resistance showed great more 15% than the general products, more 9% than the products by the flame burner.
        4,000원
        87.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PU flame-retardant coatings (APHD) containing phosphorous were prepared by blending of hexamethylene diisocyanate-trimer, white pigment, dispersing agent, flowing agent, and previously prepared benzoic acid modified polyester (APTB) that contains phosphorous. Physical properties of the prepared APHD were examined. With the introduction of BZA (contained in APTB), the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210~313 seconds, and in a 45˚ Meckel burner method, shows 1.3~4.0cm2 of char length, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.
        4,000원
        88.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate) (TBOP) wer synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-5, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. The structure and characteristics of APTBs were examined using FT-IR, NMR, GPC, and TGA analysis. The increase of the amount of BZA in the synthesis of APTBs resulted in decrease in average molecular weight and kinematic viscosity. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures.
        4,200원
        89.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti. In order to clarify the effect of cooling rate of hot flame on the formation of crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile nanopowder of above 95%
        4,000원
        91.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrophosphoric modified polyesters (TATBs) were synthesized by polycondensation of adipic acid, trimethylolpropane, 1,4-butanediol, and tetramethylene bis(orthophosphate). Two-component PU flame-retardant coatings (TATBCs) were prepared by blending TATBs with HDI-Biuret. Most of the physical properties of the flame-retardant coatings were comparable to those of non-flame-retardant coatings. Coatings containing 10 and 15wt% 1,4-butanediol, TATBC-10C and TATBC-15C were not flammable in the vertical flame-retardancy test.
        4,000원
        92.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two-component polyurethane flame retardant coatings (ATTBC) were prepared by blending polyisocyanate (TDI-adduct) with ATTBs mentioned at the previous paper. Most of the physical properties of the flame retardant coatings were comparable to those of non-flame retardant coatings. Especially, the hardness, impact resistance, and accelerated weathering resistance were remarkably improved with the increase of the content of 1,4-butanediol. Coatings containing 10 and 15 wt% 1,4-butanediol, ATTBC-10C and ATTBC-15C, were not flammable in vertical flame-retardancy test. Their char area recorded 1.1~11.6 cm2 in 45˚ eckel burner method.
        4,000원
        93.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To comparison the surface treatment methods of stone board materials, the results of Dorry's abrasive test were 23.4 for water-jet system and 18.9 for flame-burner system. Therefore abrasive hardness, the stone board materials by the water-jet system was greater than one by flame-jet system. As a result of Shore's hardness test, the stone board materials by water-jet system was twice greater than one by flame-jet system. Authors carried out microscopic observation to survey a defection of the composition minerals for two methods, but all of the both methods have not founded a defection. Therefore, the stone board materials by water-jet system was greater durability than one by flame-jet for the surface treatment methods.
        4,600원
        94.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An intermediate, tetramethylene bis (orthophosphate), was prepared by the esterification of pyrophosphoric acid and l,4-butanediol. Then pyrophosphoric-containing modified polyesters (ATTBs) were synthesized by polycondensation of tetramethylene bis(orthophosphate), trimethylolpropane, adipic acid, and l,4-butanediol. The content of l,4-butanediol was varied from 10 to 20wt% for the reaction. The increase of the amount of l,4-butanediol in the synthesis of ATTBs resulted in increase in average molecular weight and decrease in kinematic viscosity owing to the excellent flowability and reactivity of l,4-butanediol.
        4,000원
        97.
        2002.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two PU flame-retardant coatings, 2,3-DBPO/N-l00 (DBPON) and 2,3-DBPO/IL (DBPOI), were prepared by curing 2,3-dibromo modified polyester (2,3-DBPO) with isocyanate curing agent Desmodur N-l00 (or Desmodur IL) at room temperature. The physical properties and flame-retardancy of the two coatings were tested and compared. As a result, the pot-life, yellowness index, lightness index difference, 60˚ specular gloss, cross-hatch adhesion, viscosity, and accelerated weathering resistance of DBPON were better than those of DBPOI; the fineness of grind of the two coatings were the same; and the drying time, hardness, and abrasion resistance of DBPOI were better than those of DBPON. The flame retardancy of the flame-retardant coatings increased with the content of the flame retarding component, 2,3-dibromopropanoic acid (2,3-DBP); and the LOI values of the two coatings were in a range of 27~29% when the content of 2,3-DBP was 30wt%.
        4,000원
        99.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two-component polyurethane flame-retardant coatings were prepared by blending trichloro aromatic modified polyesters(TCMPs) and polyisocyanate. TCMPs were synthesized by polycondensation of trichlorobenzoic acid(TCBA), a flame-retardant component, with adipic acid, 1,4-butanediol, and trimethylolpropane. The content of TCBA was varied in 10, 20, and 30 wt% for the reaction. These new flame-retardant coatings showed various properties comparable to other non-flame-retardant coatings. Moreover, we carried out the combustion test and the flammability test for our flame-retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TCBA were determined as 'no burn'. The results of flammability test for the coatings with 20 wt% and 30 wt% of TCBA contents indicated the limiting oxygen index(LOI) values of 25% and 28% respectively, which implied relatively good flame retardancy.
        4,000원
        100.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrophosphoric lactone modified polyester(PATT) that contains two phosphorous functional groups in one unit base resin structure was synthesized to prepare a non-toxic reactive flame retardant coatings. Then the PATT was cured at room temperature with isocyanate, Desmodur IL, to get a two-component polyurethane flame retardant coatings(PIPUC). Comparing the physical properties of the films of PIPUC with the film of non-flame retardant coatings, there was no degradation observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by 45˚Meckel burner method were 3.1~4.4cm and LOI values recorded 27~30%. These results indicate that the coatings prepared in this study is good flame retardant one. The surface structure of coatings investigated with SEM does not show any defects and phase separation.
        4,000원
        1 2 3 4 5