One of released radioactive gases from a spent fuel is cesium (137Cs) as semi-volatile fission products and reticulated ceramic foam could be used for capturing the gaseous cesium. It has threedimensional open-pore structures and consumes cesium above 600°C to form cesium species including Cs-nepheline (CsAlSiO4) and pollucite (CsAlSi2O6) phases. Kaolinite-based foam filter is a favorable ceramic filter because they exhibit superior capture characteristics compared to other aluminosilicate minerals and other shape filters. However, for usage in special conditions, structural limitations such broken struts must be improved. Here, recoating by using centrifugation, followed by a pre-sintering cycle was conducted for covering the cracks and voids, resulting from the burnout of the polyurethane sponge as a sacricial template. The slurry including additives was chosen by considering viscous behavior of slurries for the centrifugation. The microstructure and strength was improved by the recoating.
Reticulated foams have a continuous skeleton network consisting of aluminosilicates and are used for capturing gaseous cesium released from spent nuclear fuel at high temperature. It has high stability to high temperature and good capturing performance. Homogeneous cell distribution and modified surface structures are indispensable conditions for stable operation and handling. In particular, triangularly shaped holes inside the struts were generated during the pyrolysis of polyurethane sponge as a sacricial template, which lead to limite the strength of the reticulated foam as well as cracks. However, several attempts have been focused on the increasing the strut thickness. Here, we have prepared ceramic foams by the polyurethane sponge replication method with roller squeezing. Ceramic slurry including additives was determined with consideration of its viscous behavior. After pre-sintering, infiltration under vacuum was conducted. Metakaolin slurry was filled partially into the triangular void. As a result, the compression strength was improved by structure modification without composition change.
Synergetic effect of multi-walled carbon nanotubes (MWCNTs)/nanoclays hybrid was investigated on the properties of highimpact polystyrene (HIPS) nanocomposite foams. The glass transition temperature and the cellular structure including the cell size and cell density were studied in details. Adding MWCNT and nanoclay increased the glass transition temperature of HIPS by 8.5 °C and 1.5 °C, respectively. The experimental results indicated that the cell size of HIPS foams was reduced from 84.05 to 60.97 μm and 40.22 μm using MWCNTs and nanoclays, respectively. The synergetic effect of MWCNT/nanoclay was more significant by reducing the cell size to 13.69 μm. The cell density was improved from 5.79 × 104 to 1.77 × 105 cell/ cm3 using MWCNTs and to 9.39 × 106 cell/cm3 using nanoclays. The cell density reached to 2.90 × 107 cell/cm3 using the synergetic effect of MWCNT/nanoclay.
Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100– 450 μm are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80oC and 200oC in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800oC for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.
Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following ZnCl2 chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state 13C nuclear magnetic resonance (NMR) spectra and X-ray photoelectron spectroscopy were used to characterize the nitrogen-doped carbon nanosheet structure and composition. The removal of Cr(VI) by the N-doped carbon nanosheets was investigated. The results showed that the maximum removal capacity for chromium of 188 mg/g was found at pH=2.0 with PHC-Z-3. pH had an important effect on Cr(VI) removal and the optimal pH was 2.0. Moreover, amino groups and carboxyl groups in the nitrogen-doped carbon nanosheet played important roles in Cr(VI) removal, and promoted the reduction of Cr(VI) to Cr(III).
Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were 750˚C, 400-500˚C, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.
Herein, macroporous carbon foams were successfully prepared with phenol and formaldehyde as carbon precursors and an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6), as a pore generator by employing a polymerization-induced phase separation method. During the polycondensation reaction of phenol and formaldehyde, BMIPF6 forms a clustered structure which in turn yields macropores upon carbonization. The morphology, pore structure, electrical conductivity of carbon foams were investigated in terms of the amount of the ionic liquid. The as-prepared macroporous carbon foams had around 100-150 μm-sized pores. More importantly, the electrical conductivity of the carbon foams was linearly improved by the addition of BMIPF6. To the best of the author's knowledge, this is the first result reporting the possibility of the use of an ionic liquid to prepare porous carbon materials.
Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and CaCO3 powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from 660˚C to 750˚C, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of 720˚C had the best energy absorption. The energy absorption value of Mg foam was 15.52 MJ/m3 at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.
Metallic foams have a combination of attractive properties such as high specific mechanical properties and good energy absorption characteristics. This paper presents the properties of steel foam sandwiches produced using powder metallurgy approach. Metallic powder, solid polymeric binder and a foaming agent are dry-mixed and molded into the desired shape. The molded powder mix is then heat-treated to foam, debind and sinter the material. The resulting material has an open cell structure with high porosity. The structure and properties of sandwiches specimens produced with the process are presented and discussed.
A conductimetric study of foam formed from mixture of the protein, β-lactoglobulin, and the nonioinc surfactant, SML, revealed that their stability was reduced at concentrations of SML in the range 3~10mM. The interaction of SML with β-lactoglobulin was investigated by fluorimetry and a dissociation constant of 0.2μM was calculated for the complex. Surface tension studies confirmed the presence of interaction between the two components and provided evidence for the progressive displacement of β-lactogloblin from the air/water interface with increasing SML concentration. Experiments using air-suspended microscopic thin liquid films revealed transitions in the chainage characteristics and thickness of the film at SML concentrations below that which resulted in destabilization of the foam. However, measurements of surface mobility of fluorescent-labeled β-lactoglobulin by a photobleaching method identified that a transition to a mobile system occurred at a SML concentration which correlated with the onset of instability in the disperse phase. The results would indicate that maintenance of the viscoelastic properties of the surface is paramount importance in determining the stability of interfaces comprising mixtures of protein and surfactant.
본 총설에서는 기포의 화장품 이용에 대해서 논의하고자 하였다. 기포의 생성은 기포형성제와 기포 생성 장치등을 이용하며 생성된 기포는 다양한 특성을 나타낸다. 기포는 기체의 용매에 대한 분산 형태로 발생된다. 기포의 안정성과 유변학적인 성질 등을 평가하는 것은 기포를 제형으로 이용하기 위한 출발점이다. 기포의 의약품과 화장품에 대한 이용은 점차 증가 추세에 있다. 의약품의 경우 기포 제형은 직장(rectal), 질(vaginal) 및 피부(dermal)용으로 대별될 수 있으며 화장품 영역의 경우 기포 제형은 모발 및 메이크업 영역에서는 헤어 무스, 파운데이션 등에서 이용되고 있으며 기초화장품에서는 자외선 차단 화장품에 이용되고 있다. 최근 유효성분의 안정화 및 유효성분의 피부 전달 측면에서 많은 연구와 특허가 출원되고 있어 향후 기능성화장품의 새로운 제형으로 활용이 기대된다.