Friction Stir Spot Welding (FSSW) is a solid-state welding technology that is rapidly growing in the automotive industry. Achieving superior welding characteristics requires the proper selection of tool geometry and process conditions. In this study, FSSW was performed on dissimilar materials comprising AA5052-HO/hot-melt aluminum alloy sheets and Steel Plate Cold Rolled for Deep Drawing Use(SPCUD) steel sheets. The effects of tool geometry, plate arrangement, and tool plunge depth on the welding process were investigated. At the joint interface between the aluminum alloy and the steel sheet, new intermetallic compounds (IMCs) were observed. As the plunge depth increased, thicker and more continuous IMC layers were formed. However, excessive plunge depth led to discontinuous layers and cracking defects. An analysis of the IMCs revealed a correlation between the IMC thickness and the shear tensile load. Furthermore, compared to the conventional Al-Top arrangement, the St-Top arrangement exhibited reduced deformation and superior shear tensile load values. These findings indicate that plate arrangement significantly influences the mechanical properties of the joint.
Friction welding, which uses heat and plastic flow to join metals, is expanding across industries due to its ability to weld heterogeneous alloys and simple process. However, process research is essential for materials with complex geometries, and limited research has been conducted on friction welding between cast and sintered metals. This study analyzed the mechanical properties and microstructural evolution of the joint by controlling the rotational speed and friction pressure, which affect the removal of the heat-affected zone in friction welding of casted SCM440 and sintered F-05-140. Hardness mapping and microstructure observations with material transition were performed to investigate the correlation between phase behavior and welding conditions. These results are anticipated to reduce costs and improve the mechanical properties of key mobility components.
Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
In this study, we investigated the change in fracture properties after friction stir welding on Al606. In the L-T direction test, the fracture toughness of the unwelded base material was 275 MPa, and the specimen subjected to friction stir welding (FSW) was 227 MPa, showing that the fracture toughness decreased significantly with friction stir welding. In the T-L direction test, the difference between the base material and the weld material was not large, but the fracture toughness was shown to decrease during welding. In the comparison of the L-T direction and the T-L direction, it was found that both the base material and the weld material showed high fracture toughness in the L-T direction.In this study, the following conclusions were obtained after friction stir welding of Al 6061-T6.
Power converter devices require a high level of quality because they have a high direct connection with vehicle operation. Therefore, structural bonding was carried out by friction stir welding with excellent mechanical properties. Friction stir welding can cause structural deflection depending on the load of the welding tool, so it is important to control this for high quality flatness. In this study, pre-welding was performed before welding to minimize deflection generated during welding. And deflection reduction data according to the location of pre-welding were analyzed through dynamic analysis. As a result, based on computerized data rather than experimental data an optimized position of pre-welding was secured to minimize the deflection that occurs during friction stir welding. Through this, a process guide that enables high quality structural bonding was presented.
In this study, experiments and simulations were performed for fillet joint friction stir welding according to tool shape and welding conditions. Conventional butt friction stir welding has good weldability because heat is generated by friction with the bottom of the tool shoulder. However, in the case of fillet friction stir welding, the frictional heat is not sufficiently generated at the bottom of the tool shoulder due to the shape of the tool and the shape of the joint. Therefore, it is important to sufficiently generate frictional heat by slowing the welding speed as compared to butt welding. In this study, experiments and simulations were carried out on an aluminum battery housing made by friction stir welding an extruded material with a fillet joint. The temperature of the structure was measured using a thermocouple during welding, and the heat source was calculated through correlation analysis. Thermal elasto-plastic analysis of the structure was carried out using the calculated heat source and geometric boundary conditions. It is confirmed that the experimental results and the simulation results are well matched. Based on the results of the study, the deformation of the structure can be calculated through simulation even if the tool shape and welding process conditions change.
We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from 15.1 μm in the base material to 4.5 μm in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions
In this study, SM45C-STKM13B hollow shaft of different thickness was joined by friction welding. After friction welding, we treated to specimen of annealing(post-weld heat treatment). The specimens were tested as-welded and post-weld heat treatment(PWHT). The mechanical properties including tensile test and vickers micro-hardness were examined. And then, the mechanical properties were compared for as-welded and PWHT in SM45C to STKM13B. Microstructure of joining part were examined in the weld interface and weld region and heat affected zone and base metal of weld parts.
This study was carried out to evaluate the developed microstructures and mechanical properties of friction welded A6063 alloy. For this work, specimens were prepared at a size of 12 mm Ø × 80 mm, and friction welding was carried out at a rotation speed of 2,000 RPM, friction pressure of 12 kgf/cm² and upset pressure of 25 kgf/cm². To perform an analysis of the grain boundary characteristic distributions, such as the grain size, orientation and misorientation angle distributions, the electron back-scattering diffraction method was used. In addition, in order to identify the dispersed intermetallic compounds of the base and welded materials, transmission electron microscopy was used. The experimental results found that the application of friction welding on A6063 led to significant grain refinement of the welded zone relative to that of the base material. Besides this, intermetallic compounds such as AlMnSi and Al2Cu were found to be dispersed with more refined size relative to that of the base material. This formation retains the mechanical properties of the welds, which results in the fracture aspect at the base material zone. Therefore, based on the developed microstructures and mechanical properties, the application of friction welding on A6063 could be used to obtain a sound weld zone.
In this study, the curvature FSW experiments were performed with the 2 mm thickness of Al 5083-O using by the 5 axis(X/Y/Z/A/C) position control system. For the mechanical test of the butt joints, the tungsten heavy alloy as the tool material without necessary after finishing the heat treatment such as quenching was used. In particular, the insertion depth and the welding speed was changed at the constant rotation speed in order to select the optimum FSW condition. The test results were visually satisfactory for the approximate joint length of 300 mm. Sound joint was formed at the condition of 1.9 mm-1000 rpm-100 mm/min and its tensile strength of joint was the most high almost the same as that of the base material.
In this study, the cold rolled DP590 FSW joints were obtained by the position control type of the FSW machine and examined. The FSW weldability was investigated using the Si3N4 tool specially made by Cold Isostatic Press (CIP). Defect-free joints were formed at 180-300 mm/min at 800 rpm. However, a groove-like defect was observed along the joint line of the advancing side due to the insufficient material flow. In addition, the life of the Si3N4 tool was compared to that of the polycrystalline cubic boron nitride (PCBN) tool for the durability. The SI3N4 tool that was broken in which tool reached a length of 5 m and around half of the performance level of the PCBN tool.
A5J32-T4 and A5052-H32 dissimilar aluminum alloy plates with thickness of 1.6 and 1.5 mm were welded by friction stir lap welding (FSLW). The FSLW were studied using different probe length tool and various welding conditions which is rotation speed of 1000, 1500 rpm and welding speed of 100 to 600 mm/min and material arrangement, respectively. The effects of plunge depth of tool and welding conditions on tensile properties and weld nugget formation. The results showed that three type nugget shapes such as hooking, void, sound have been observed with revolutionary pitch. This plunge depth and material arrangement were found to effect on the void and hooking for- mation, which in turn significantly influenced the mechanical properties. The maximum joint efficiency of the FSLWed plates was about 90% compared to base metal, A5052-H32 when the A5052-H32 was positioned upper plate and plunge depth was positioned at near interface between upper and lower plates.
선박 구조재료 FRP 재료의 대체 재료로 빠른 선속과 선적량 증가는 물론 재활용이 용이한 Al 선박으로 전환되고 있다. 본 논문에서는 인장실험을 통해 레저선박에 사용되는 5456-H116 합금에 대한 최적의 마찰교반용접 조건에서 프루브 직경의 효과를 기술하였다. 마찰교반용접에서 이송속도, 회전속도를 변수로 5 mm의 프루브 직경을 사용하여, 이송속도가 61 mm/min의 조건에서 가장 우수한 결과를 나타냈다. 프루브 직경 6 mm, 회전속도 170-210 rpm, 이송속도 15 mm/min 에서는 낮은 회전속도로 인하여 불충분한 용접열이 발생하여 거친 표면과 기공이 형성 되었다. 회전속도 500-800 rpm인 경우, 용접부에 칩이 관찰되었으며, 기공은 생기지 않았고, 용접표면은 우수하였으나 1100-2500 rpm에서는 지나친 용접열의 발생으로 많은 칩이 발생하였다. 열에 의한 영향은 용접 배면에서 관찰되었다. 이송속도가 15 mm/min에서 회전속도의 증가하게 되면 마찰이 증가함에 따라 용접열이 발생한다. 기계적 특성은 용접 입열량이 증가할수록 재질의 연화가 가속화되어 저하하였다.
The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness
Shock absorber base assembly is one of the parts in shock absorber equipment which control the vehicle movement and absorb the shock and vibration to realize the stability and the comfort for the riding. This part demand hardness, reliance and rigorous density of the welded section because it is a resist pressure container which needs durability by being filled with gas and oil. However, the present engineering needs much time, high cost and shows low production rate due to the eight processes which are spot welding, reinforcement welding(MAG), prior process of base cap and tube for the precision and pressing etc. In this study we will analyze the problem of the processes for the base assembly and suggest an engineering to improve the problem innovatively using frictional welding. As the result of experiment by frictional welding using frictional heat, its hardness for the joining section became high and its precision showed excellence. Therefore we can expect the curtailment for the welding processes, the reduction of cost and excellent joining function.
Friction welding of particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was . Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained layer. This was attributed to the fact that the fine-grained layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained layer can be obtained.
In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.