검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 28

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinolates and related gene expression among kale cultivars has been poorly reported. In this study, we investigated glucosinolates profile and content in three different kale cultivars, including green (‘Man-Choo’ and ‘Mat-Jjang’) and red kale (‘Red-Curled’) cultivars grown in a vertical farm, using transcriptomic and metabolomic analyses. The growth and development of the green kale cultivars were higher than those of the red kale cultivar at 6 weeks after cultivation. High-performance liquid chromatography (HPLC) analysis revealed five glucosinolates in the ‘Man-Choo’ cultivar, and four glucosinolates in the ‘Mat-Jjang’ and ‘Red-Curled’ cultivars. Glucobrassicin was the most predominant glucosinolate followed by gluconastrutiin in all the cultivars. In contrast, other glucosinolates were highly dependent to the genotypes. The highest total glucosinolates was found in the ‘Red-Curled’ cultivar, which followed by ‘Man-Choo’ and ‘Mat-Jjang’. Based on transcriptome analysis, eight genes were involved in glucosinolate biosynthesis. The overall results suggest that the glucosinolate content and accumulation patterns differ according to the kale cultivar and differential expression of glucosinolate biosynthetic genes.
        4,200원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        글루탐산은 식물의 생장과 발달에 중요한 역할을 하는 필수 아미노산의 전구체이며, 저온 보호 물질로 이어지는 생합성 경로를 자극하여 저온 피해를 줄이는 생물자극제 중 하나이 다. 본 연구에서는 저온 스트레스 조건에서 글루탐산 엽면 처 리가 배추에 미치는 영향을 평가하였다. 글루탐산 2가지 엽면 시비 농도(0 및 10mg·L-1)와 3가지 주/야간 온도 수준(11/-1 °C extremely low, E; 16/4°C moderately low, M; 21/9°C optimal, O)을 결합하여 6개의 처리가 수행되었다. 글루탐산 의 엽면 처리는 정식 후 10일에 1회 살포하고, 글루탐산 처리 직후 온도 처리는 최대 4일 동안 실시하였다. 처리 4일 후, ABA, PA, DPA 및 ABA-GE 함량은 M 처리에서 Glu 0 처리 보다 Glu 10 처리에서 함량이 더 높았다. Glucose 함량은 E 및 Glu 10 처리에서 가장 높은 반면(52.1mg·100g-1 dry weight), fructose 함량은 O 및 Glu 0 처리에서 함량이 가장 높았다 (134.6mg·100g-1 dry weight). GLP, GBS, 4MGBS, GNBS 및 GNS 함량은 E 및 Glu 10 처리에서 모든 처리 중 가장 높았 다(0.72, 2.05, 1.67, 9.40 및 0.85μmol·g-1 dry weight). 처리 2일 후 E 및 Glu 10 처리의 PA와 DPA함량에서 급격한 변화 를 확인하였고, 몇몇 개별 glucosinolate 함량(GLP, GBS, 4MGBS, GNBS 및 GNS)은 저온과 글루탐산 처리에 따라 유 의적 차이를 확인할 수 있었다. 또한, fructose는 glucose 대신 fructan을 에너지원으로 사용하였기 때문에 처리 4일후 E와 M처리에서 O 처리에 비하여 유의적으로 낮은 함량을 보였다. 따라서, 저온과 글루탐산 엽면 처리에 따른 PA, DPA, glucose, fructose 및 개별 glucosinolate 물질들의 변이를 확 인하였지만, 저온과 글루탐산의 효과에 관한 명확한 상관관계를 평가할 수는 없었다. 배추과 작물은 호냉성 채소로서 저 온에 민감하게 반응하지 않고, 대부분 내한성을 가지고 있기 때문으로 판단된다.
        4,000원
        3.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 실험은 물냉이 수경재배 시 양액 내 발생 시킨 마이크로버블이 물냉이의 생육과 glucosinolate 축적에 미치는 영향을 알아보기 위해 수행되었다. 본엽 4매의 물냉이 유묘(파종 2주 후)를 마이크로 버블과 비-마이크로버블을 발생시킨 오오츠카 배양액을 이용하여 환경조절룸에서 3주간 재배하였다. 물냉이 초장은 대조구처리가 마이크로버 블처리보다 41% 증가하였으며, 유의적으로 높게 나타났다. 그러나, 지상부 생체중과 건물중, 근장, 엽장, 엽폭, SPAD, 량자수율값은 두처리간 유의적 차이는 나타나지 않았다. Glucosinolate 함량을 분석 결과 4-methoxygluco-brassicin을 제외한 glucoiberin, glucobrassicin, gluconapin, gluconasturtiin의 경우 마이크로버블 처리구가 대조구보다 유의적으로 높게 나타났으며, 물냉이 한주 당 총 glucosinolate 함량은 마이크로버블 처리구가 대조구 보다 85%(μmol/g DW)와 65%(μmol/plant) 더 높게 나타났다. 본 연구 결과는 담액재배시 양액 내 마이크로버블 이 물냉이의 glucosinolate 함량을 증가시킬 수 있을 것으로 나타났다.
        4,000원
        4.
        2019.04 구독 인증기관·개인회원 무료
        In Europe, the cabbage stem flea beetle (Psylliodes chrysocephala) is a specialized insect feeding on Brassicaceae plants. The plants use the glucosinolate-myrosinase defense system, but P. chrysocephala can overcome this chemical defense by detoxification of the emerging ITCs by conjugation with glutathione (mercapturic acid pathway). In addition to known products of the mercapturic acid pathway, previously unreported metabolites were isolated, and their structures were elucidated by means of high resolution mass spectroscopy (HR-ESITOFMS) and nuclear magnetic resonance (NMR). The products found may represent general detoxification products of the mercapturic acid pathway.
        6.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 3가지의 배추과 작물의 새싹에서 적색(R)과 원적외선(FR)광에 초점을 맞추어서 glucosinolate(GSL), 총 페놀, 총 플라보노이드, 비타민 C 함량, 항산화 활성을 평가하는 것이다. 제한된 환경조건에서 5일된 새싹에 3가지의 R/FR비율을 2일동안 24시간 노출시켜 식물화학물질과 항산화활성을 대조군[형광등, R:B(8:2), 암조건]과 비교하였다. 총 GSL 함량은 각 처리 기간 동안 3가지의 작물 중 브로콜리에서 가장 높았으며, 브로콜리 새싹에서 R/FR 비율이 증가함에 따라 총 GSL 함량이 감소하는 반면 배추와 무의 새싹에서는 유의하지 않은 결과를 보여주었다. 배추 및 브로콜리의 주요 GSL인 progointrin은 대조군에 비해 R/FR 비율이 감소함에 따라 최대 38%, 69%까지 감소하였다. 3가지 배추과 새싹에서 페놀, 플라보노이드 및 비타민 C의 함량 모두 암조건에서 가장 낮았다. 총 페놀 및 항산화 활성은 3가지 배추과 새싹에서 R/FR 비율이 감소할수록 증가하는 반면, 총 플라보노이드와 비타민 C 함량은 작물 간 다른 양상을 보였다. 이러한 결과는 FR의 보광에 따라 배추과 새싹의 기능적 품질을 향상시킬 것으로 기대된다.
        4,000원
        7.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        배양액의 종류 및 LED를 이용한 다양한 광질 조건이 물냉이의 생장과 glucosinolates 함량에 미치는 영향을 3주간의 수경재배를 통하여 살펴보았다. 물냉이 종자를 암면배지에 파종 후 발아시켜, 2주간 육묘하였다. 유묘들은 semi-DFT 시스템에 이식하였다. 환경조절실은 주간온도 20±1℃와 야간온도 16±1℃, 주간습도 65±10%와 야간습도 75±10%의 범위에서 조절되었으며 16/8h 조건의 광주기와 180±10μmol·m-2·s-1 광강도를 유지하였다. 배양액은 오오츠카 하우스 1A(OTS), 한국원시(HES)과 화란온실작물연구소(PBG) 배양액을 초기 EC 1.0-1.3, pH 6.2와 형광등을 광원으로 실험하였다(실험-1). 광질에 대한 생육과 glucosinolates 함량을 분석하기 위하여 단색광(적색: R10, 백색: W10) 처리구와 혼합광(적청녹색: R2B1G1, 백청녹색: W2B1G1, 적색: R10, 적청색: R5B1, 적청색: R3B1)처리구를 두었다. 물냉이 지상부의 생육은 3개의 배양액 처리구에서 유의적인 차이가 발견되지 않았지만, 뿌리의 생체중은 HES와 비교하여 PBG와 OTS에서 13.7%와 55.1% 증가하였다. OTS 처리는 PBG와 HES 처리구에 비해 gluconasturtiin 함량이 96%, 65% 증가하였다. 백색광조건(W10)과 비교하여 적색광(R10) 처리는 초장이 101.3% 증가하였다. 청색광 비율의 증가는 지상부 생육에 긍정적인 영향을 주었다. 물냉이의 건물중 당 glucosinolates 함량은 R2B1G1 처리구와 비교하여 R3B1 처리구에서 144.5% 증가하였으며, W10 처리구와 비교 시, 약 70% 증가하는 경향을 보였다. R3B1 처리구에서 물냉이의 생육과 총 glucosinolates의 함량이 가장 높게 나타났다.
        4,000원
        8.
        2018.10 구독 인증기관·개인회원 무료
        Many insects are able to feed on crucifers despite the presence of a potent activated defense system known as the mustard oil bomb. In damaged tissue, mustard oil glucosides (glucosinolates) are hydrolyzed by the enzyme myrosinase to form toxic mustard oils (isothiocyanates). Here, we analyzed how the the cabbage stem flea beetle Psylliodes chrysocephala, a key pest of oilseed rape, copes with this chemical defense. First, we found that P. chrysocephala prevents the activation of ingested glucosinolates by two different strategies, a) by sequestering glucosinolates and b) by converting glucosinolates to desulfo-glucosinolates. Our next aim was to identify the sulfatase enzyme(s) responsible for the detoxification of glucosinolates in P. chrysocephala. Nine arylsulfatase-like genes were identified in the transcriptome of P. chrysocephala, and five of them showed glucosinolate sulfatase activity upon heterologous expression in Sf9 cells. By using RNAi, we confirmed that PcGSS1 and PcGSS2 are active towards benzenic and indolic glucosinolates in P. chrysocephala adults in vivo. However, in feeding experiments, the proportion of sequestered and desulfated glucosinolates ranged from 26 to 35% which suggests that these strategies alone are likely not sufficient to overcome the chemical plant defense. Indeed, P. chrysocephala additionally conjugates isothiocyanates to glutathione and metabolizes them via the conserved mercapturic acid pathway. In summary, the cabbage stem flea beetle avoids isothiocyanate formation by specialized strategies (sequestration and desulfation), but also relies on a conserved detoxification pathway to prevent toxicity of isothiocyanates.
        9.
        2017.04 구독 인증기관·개인회원 무료
        Beneficial effects of glucosinolate in Chinese cabbage on human health have propelled researches on biochemical and genetic characteristics of glucosinolate and Chinese cabbage. However, growth conditions which are practically important in producing functional Chinese cabbage and in optimizing glucosinolate have been little focused. The objective of this study, hence, was to identify growth conditions affecting glucosinolate contents so that the result could be used for further optimizing glucosinolate in Chinese cabbage. We used principal component analysis (PCA) for analyzing glucosinolate contents in Chinese cabbage cultivated under various growth conditions in the plant factory. As a result, PCA showed that two principal components were able to explain more than 76% of variations in glucosinolate contents caused by different growth conditions. The first principal component (PC1) was mainly represented by humidity and temperature, while growth duration was the main component of PC2. From these results, it was conclusive that glucosinolate contents in Chinese cabbage were largely affected by humidity, temperature and growth duration.
        10.
        2016.10 구독 인증기관·개인회원 무료
        RSM (response surface method) is a statistical method that optimizes a response variable (dependent variable) according to multiple explanatory variables (independent variable) [1]. RSM visualizes responses of the target depending on experimental conditions, using a regression equation containing an intercept, and coefficients of first-order, second-order, and interactive terms (equation 1). Response surface experimental design is a method for designing RSM experiments [2] which aims to identify the optimal number of trials (number of data points) and number of conditions (range of experimental variables) according to the order of the regression model. Generally, the number of trials in an experiment is composed of central points, factorial points, and axial (or star) points, which varies depending on the number of variables. In this study, we used three widely used response surface experimental designs, i.e., simplex, central composite, and equiradial designs to propose experimental set-up applicable for a future study regarding the effects of storage conditions (e.g., temperature and humidity) on glucosinolate content.
        11.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 식물공장 인공광원이 수경재배 케일의 생육, 수량 및 글루코시놀레이트(GLS) 함량에 미치는 영향을 구명코자 수행하였다. 인공광원으로 LED B:W(1:1, BW), R:B:W(2:1:3, RBW), BW+형광등(1:1+FL, BW+FL) 등 3 처리를 하였다. 수확 엽수와 엽중은 BW+FL이 BW와 RBW보다 우수하였다. 엽장은 BW+FL에서, 엽폭은 RBW 가 우수하여 다른 처리와 통계적인 유의성을 나타냈다. 엽록소 함량과 ‘L’ 값은 처리간에 유의성이 없었으며, ‘a’ 값과 ‘b’ 값은 BW+FL에서 가장 낮았다. GLS 함량은 모든 처리에서 glucobrassicin, glucoiberin, gluconasturtiin, sinigrin, progoitrin, glucoraphamin, epiprogoitrin 순으로 많았으며, 총 GLS 함량은 RBW에서 가장 높았다. 잎의 수분 함량, 조단백질, 조지방 함량, 회분 함량은 처리간에 유의성을 나타내지 않았다. 결론적으로 광은 생육과 2차 대사산물의 합성에 차이가 나타내며, 기능성 향상을 위해 후속 연구가 필요하다고 판단된다.
        4,000원
        12.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we determined total polyphenol content(TPC) and total flavonoid content(TFC) of extracts from Korean cabbage and cabbage using a spectrophotometric method as well as glucosinolates concentration by HPLC. TPCs of Korean cabbage and cabbage extracts were 308.48 ㎍ GAE/g dry weight and 344.75 ㎍ GAE/g dry weight, respectively. TFCs of Korean cabbage and cabbage extracts were 5.33 ㎍ QE/g dry weight and 5.95 ㎍ QE/g dry weight, respectively. We found six different glucosinolates, namely progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin and 4- methoxyglucobrassicin in the Korean cabbage extract. In the cabbage extract, there was four glucosinolates, namely glucoraphanin, sinigrin, glucobrassicin and 4-methoxyglucobrassicin. We determined the cytotoxic effect of Korean cabbage and cabbage extracts in AGS human stomach cancer cells, HepG2 human hepatic cancer cells and LNCaP human prostate cancer cells by MTT assay. Dose-dependent relationships were found between the extract concentrations and cancer cell growth inhibition. The overall results support that both Korean cabbage and cabbage, the major vegetables in Korea, contain bioactive compounds such as polypheol, flavonoids as well as glucosinolates and they may play a positive role in cancer prevention.
        4,000원
        13.
        2018.10 서비스 종료(열람 제한)
        Background : Radish sprouts or young seedlings are important nutritional vegetables in Asian countries. In the present study, we investigated plant growth and levels of glucosinolate accumulation in radish sprouts in response to treatments with different carbon sources. Plant growth and accumulation of glucosinolates were inversely correlated in treatments with different carbon sources. Methods and Results : All the carbon sources used in this study inhibited the growth of shoot and root in radish sprouts and facilitated significantly the accumulation of glucosinolates. Seven different glucosinolate compounds were detected in radish sprouts treated with different carbon sources. The total as well as individual amounts of all the identified glucosinolates increased after treatments with different carbon sources, except for 4-methoxyglucobrassicin and glucoiberin. In particular, the supplementation of sucrose, galactose, and glucose resulted in highest glucosinolate accumulation in radish sprouts. Radish sprouts treated with sucrose showed the highest levels of total glucosinolates, which was 1.22-fold higher than that of untreated sprouts. Furthermore, sucrose treatment resulted in higher production of gluconapoleiferin, glucoerucin, glucoraphasatin, and glucobrassicin compared with that in untreated sprouts, and the treatment of galactose and glucose similarly enhanced glucosinolate production when compared with untreated sprouts. Conclusion : seven glucosinolates were identified by HPLC and great differences in glucosinolates levels were observed in radish sprouts in response to different carbon sources. The glucosinolate production was positively affected by most of the stimuli used in this study. The results presented herein provide information about optimal cultivation conditions, particularly the suitable carbon sources, that will enhance glucosinolate production in radish sprouts.
        14.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Glucosinolates (GSLs), beneficial secondary metabolites for human health are abundantly present in radish vegetable. Radish is a member of Brassicaceae family and its seed, leaf and root contain very important GSLs. The objective of this study was to determine the variation of individual and total GSL contents in leaves and roots of 44 radish (Raphanus spp.) germplasm (26 R. sativus L., 3 R. raphanistrum, and 15 R. sativus L. var. raphanistroides Makino), and compare the GSL contents between leaves and roots among three Raphanus species. Thirteen GSLs were identified, being the glucoraphasatin (GRS) and glucobrassicin (GBS) the most abundant aliphatic and indolyl GSLs in both the leaves and roots. Variation in individual and total GSL contents was found among the germplasm of three Raphanus species. The GRS content was higher in roots than that of leaves in all three Raphanus species but the GBS content was higher in leaves than roots. GRS was represented 87.0%, 92.7% and 94.7% of the total GSL in roots of R. sativus L., R. raphanistrum and R. sativus L. var. raphanistroides (Makino) germplasm, respectively. Germplasm of R. raphanistrum exhibited the highest (average, 79.5 μmol/g dw) total GSL with a ranged from 62.7 to 92.9 μmol/g dw. The germplasm IT119288, Joseonmu and IT119262 from R. sativus L., RA 504 and K046542 from R. raphanistrum, and Gyeongju-2003-32 (G2003-32) and IT302373 from R. sativus L. var. raphanistroides (Makino) had high total GSL contents and these could be good candidates for developing the functional compounds-rich varieties in radish breeding program.
        15.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        8종의 잿빛곰팡이병 균주를 순무잎에 접종하여 병반의 크기를 확인한 결과 가장 강한 감염력을 보인 ‘포도-01’ 균주와 병반의 확산이 가장 적은 ‘오랜지’를 선발하였다. 순무잎이 저항성을 보인 ‘오랜지’균주를 처리한 잎이 감수성을 보인 ‘포도-01’균주를 처리한 잎보다 indole-3-ylmethyl glucosinolate (I3M-GLS) 함량이 무처리 보다 2.5배 이상 높았으나 ‘포도-01’ 균주를 처리한 잎에서는 무처리 보다 낮은 함량을 보였다. 균주의 메탄올 추출액과 물추출물을 식물배양세포에 처리한 결과 ‘오랜지’균 주의 추출물이 ‘포도-01’ 균주의 추출물보다 배양세포의 생장을 더 강하게 억제 한 것으로 나타났는데 ‘오랜지’ 균주의 메타놀 및 물 추출물 처리에서 배양세포의 활력은 각각 22.7% 및 16.5% 감소시키는 것으로 나타났다. 한편 ‘오랜지’균주 추출물을 처리 한 배양세포에서 I3M-GLS의 생합성이 ‘포도-01’ 균주 추출물 보다 현저히 높은 것으로 나타났다. 본 결과로 보아 식물체내에 생합성되는 I3M-GLS 함량은 잿빛곰팡이균에 대한 식물세포의 저항성과 밀접한 관계가 있는 것으로 판단된다.
        16.
        2017.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This study examined the total glucosinolate (GSL) and isothiocyanate (ITC) contents according to different processing conditions; fresh Kimchi cabbage (Brassica rapa L. ssp. pekinensis), salted Kimchi cabbage and kimchi (storage temperature 4℃ and 20℃) using two different cultivars (Bomatnorang and Chunkwang). Four GSL peaks representing gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin were detected in Kimchi cabbage by HPLC and HPLC/MS analysis. The total GSL contents of fresh Kimchi cabbage of Bomatnorang and Chunkwang were 21.37±1.06 μg/g dry weight (DW) and 20.96±3.33 μg/g DW, respectively. After salting, the total GSL contents of salted Kimchi cabbage decreased by 39% and 52% in Bomatnorang and Chunkwang, respectively. Finally, the total GSL contents of kimchi after storage at 20℃ decreased by 83% and 56% in Bomatnorang and Chunkwang, respectively. The extracted ITC contents were analyzed by GC/MS. Three ITC peaks were detected in Kimchi cabbage representing 2-phenylethyl ITC, 3-butenyl ITC and 4-pentenyl ITC. The 2-phenylethyl ITC levels increased during the salting process but this generally fell during storage at 20℃ as kimchi. The 3-butenyl ITC levels of Kimchi cabbage according to processing decreased rapidly due to salting and then decreased slowly during storage as kimchi. The 4-pentenyl ITC of Kimchi cabbage was lost during the salting process. The results for the change in GSL and ITC contents during the kimchi making process will be used in the food industry.
        17.
        2016.10 서비스 종료(열람 제한)
        Background : Nasturtium officinale, belongs to the Brassicaceae, is a perennial plant growing in and around natural watersystem. It is commonly called watercress and commercially consumed as a salad crop in many countries. Hairy root cultures (HRCs), transformed by Agrobacterium rhizogenes (A. rhizogenes), have been noted for an experimental model system in plant metabolic engineering for the synthesis of natural products since hairy roots have fascinating properties including biochemical and genetic stability, high biosynthetic capacity for secondary metabolites and rapid growth rates. Methods and Results : The dry weights (DW) of watercress hairy roots was measured after 4-days freeze dryer. The highest weight was recorded after HRCs in SH and half-strength SH medium, followed by the levels of DW in MS and half-strength medium. However, the level of DW after HRCs in half-strength medium was lowest. SH medium is the most suitable for the growth of watercress hairy roots. Glucosinolate contents in the hairy roots varied responding to the basal media. 1/2 SH basal media resulted in the lowest value of total glucosinolate. MS basal media, however, resulted in the highest value of total glucosinolate, as well as the highest accumulation of each glucosinolate. The hairy roots cultured in 1/2 MS basal media showed the second highest value of total glucosinolate, followed by B5, SH and 1/2 B5. The accumulation of 4-Methoxyglucobrassicin and gluconasturtiin was also secondly higher in the hairy roots in 1/2 MS. In contrast, the level of 4-Hydroxyglucobrassicin and glucobrassicin were the second highest after culturing in SH and B5, respectively. Conclusion : In this study, media played a main role in growth and glucosinolate accumulation in watercress hairy roots. SH and half-strength SH media enabled the rate growth of hairy roots to be highest. In contrast, the highest accumulation of glucosinolate was recorded after HRCs in MS media. The current study suggests HRCs of watercress could be one of an effective alternative approaches for the enhanced production of glucosinolates
        18.
        2016.10 서비스 종료(열람 제한)
        Background : Nasturtium officinale L. which is commonly known as watercress is aquatic perennial herb distributed to Europe, Asia, North and South America. It consist of various nutrients and beneficial compounds such as vitamin B and C, provitamin A, folic acid, carotenoids, glucosinolates, and minerals. Recent studies have demonstrated the biological properties that include antidiabets, antiinflammatory, antioxidative, and anticancer. In this study, the effects of light-emitting diodes (LEDs) on growth and development, accumulation of phenolic compounds and glucosinolates were investigated in watercress. Methods and Results : Length of shoot and root, and fresh weight of whole plants were measured every weeks (1 to 3 weeks) after sowing. These were significantly affected by different LED lights. Normally, length of shoot and fresh weight of white- and blue-light-radiated watercress were less than those of red-light-radiated watercress. Contents of phenolic compounds and glucosinolates were investigated in watercress under different LEDs treatment by HPLC analysis. Six phenolic compounds including catechin hydrate, chlorogenic acid, caffeic acid, p-coumaric acid, trans-cinnamic acid, and kaempferol were detected. Also, eight glucosinolates that include four aliphatic glucosinolates (glucoiberin, gluconapoleiferin, glucosiberin, and glucohirsutin), three indolic glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, and 4-methoxyglucobrassicin), and one aromatic glusinolate (gluconasturtiin). Mostly, white light treatment led to the higher production of their compounds than those of red- and blue-radiated. Conclusion : It is concluded that different LED lights have effect on growth rates and secondary metabolites production. Red light caused vigorous growth of shoot and affected their fresh weights. In addition, the accumulation of each compounds was varied depending on light colours and time of harvest.
        19.
        2014.07 서비스 종료(열람 제한)
        Glucosinolates of Brassica rapa collection from Korea genebank were measured to determine total glucosinolate content and their variation of diverse glucosinolates; Around 100 accessions representing the different morphotypes and geographical origin of Brassica rapa were analysed. The principal component analysis was performed to evaluate the differences among morphotypes using the profiles of 14 glucosinolates identified from the leaves. DMRT test and box plots showed the significant difference between total glucosinolates of subspecies. Most of turnip accessions had higher gluconilates compared to the other type accessions, Chinese cabbage and pak choi. These accessions will be used for GWAS study for glucosinolate. Now they are being finger-printed by genotyping by sequencing (GBS). Among these accession, we selected a turnip accession with high amount of glucosinolate, K0466 and two Chinese cabbage accession with low amount of glucosinolate, K0015 and K0621. To analyse quantitative traits loci (QTL) for glucosinolate synthesis, these three accessions were fixed through microspore culture. Finally, six homozygous lines were selected and were crossed each other to make F1 hybrids. We just harvested F2 seeds and transferred doubled haploid plants to pots. QTL analysis for glucosinolate will be performed these F2 and DH population.
        1 2