검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 35

        2.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.
        4,000원
        4.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At 175 ℃, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.
        4,000원
        5.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for and nanocrystalline powders mixture. Effect of the milling time on the powder characteristic of the synthesized powder was investigated. Nanocrystalline with a particle size of 50 nm was obtained at . High tetragonal powder with a tetragonality(=c/a) of 1.009 and a specific surface area of was acquired after heat-treatment at for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.
        4,000원
        6.
        2010.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of high energy ball-milling (HEBM) on the sintering behavior and piezoelectric properties of 0.1 wt% doped 0.8Pb()-0.2Pb() (PMN-PZT) ceramics were investigated. It was found that HEBM treatment was quite effective to reduce the average particle size down to 300 nm, leading to increased density as well as enhanced piezoelectric properties of a sintered specimen even though prolonged HEBM resulted in unwanted secondary phases that caused a degradation of piezoelectric properties. The dielectric constant (), piezoelectric coupling factor () and piezoelectric constant of 0.1 wt% doped PMN-PZT ceramics prepared via HEBM for 10 h reached 2040, 0.68 and 554 pC/N, respectively.
        4,000원
        7.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유통기한이 7일 밖에 되지 않는 무싹의 저장성 향상을 위해서 고체 이산화탄소를 처리하였다. 이를 위해 고체 이산화탄소의 승화시 발생하는 이산화탄소가스와 극저온의 온도로 농산물에 고이산화탄소 처리와 예냉처리를 동시에 할 수 있는 처리 장치를 개발하였는데 개발된 장치는 처리 대상 작물 주위를 10분만 5℃와 80% 이산화탄소로 조성하였다. 개발된 고이산화탄소 처리 장치를 이용하여 저장 전과 저장 중의 고체 이산화탄소 처리와 저장 전과 저장 중을 모두 한 처리, 그리고 무처리구를 두어 무싹의 저장성을 비교하였다. 고이산화탄소를 처리한 무싹은 25μm ceramic film 포장하여서 8℃에 저장하였다. 무순의 고이산화탄소 처리는 생체중 감소에는 영향을 주지 못하였고 저장 1일 째 포장내 이산화탄소와 산소 농도는 저장 중 처리구에서 40%와 10%로 고이산화탄소 농도를 보였으나 저장 7일째에는 모든 처리구의 이산화탄소 농도는 5% 미만으로 감소하였다. 고농도 이산화탄소 처리는 저장 15일째 에틸렌 농도를 낮추는 효과를 보였으나. 외관상 품질과 이취에서는 효과를 보이지 않았다.
        4,000원
        8.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to synthesize high-solid coatings, acrylic resins (HSAs) containing 90% solid content were first synthesized, then the synthesized HSAs were cured with a curing agent, isocyanate, at room temperature to obtain high-solid coatings. In the HSAs synthesis, conversion was in a range of 82~87%, and viscosities and number-averaged molecular weight (Mn) of the HSAs were in a range of 4380~8010 cP and 1540~1660, respectively. From the correlation between Tg value, viscosity and Mn, it was found that, with increasing Tg value, viscosity increases rapidly and molecular weight increases slowly. From the visco-elasity measured by the pendulum method, it was found that the curing time decreased with increasing Tg values. From the tests of physical properties of the coatings' film, 60˚ specular gloss, impact resistance and heat resistance were proved to be good and pencil hardness, drying time and pot-life were proved to be poor.
        4,000원
        9.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prepare high-solid coatings, acrylic resins, HSCs [poly (EA/EMA/2-HEMA/CLA)] that contain 90% solid, were synthesized by copolymerization of ethyl acrylate (EA), ethyl methacrylate (EMA), 2-hydroxyethyl methacrylate (2-HEMA) and caprolactone acrylate (CLA). The high-solid coatings named as CHSCs (HSCs/HDI-trimer) were prepared by the curing reaction between the acrylic resins containing 90% solid contents and the isocyanates (HDI-trimer) curing agent room temperature. The curing behavior and various properties were examined on the film coated with the both high-solid coatings. The glass transition temperatures (Tg) of CHSCs increased proportionally with increasing the predicted Tg value by Fox equation, and had nothing to do with the solid contents. The prepared film showed good properties for 60˚ specular gloss, impact resistance, cross-hatch adhesion and heat resistance, and bad properties for pencil hardness, drying time, and pot-life. Among the film properties, the heat resistance was very excellent and could be explained by the introduction of functional monomers of CLA.
        4,200원
        10.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prepare high-solid coatings, first acrylic resins (HSAs) which contain 80% solid were synthesized, and then the prepared resins were cured with isocyanate at room temperature. In the synthesis of HSAs, viscosity, number average molecular weight (Mn) and conversion were 1372~2700 cps, 1520~1650 and 83~87%, respectively. Among the four kinds of initiators used, tert-amylperoxy-2-ethyl hexanoate was the most proper one in the synthesis of HSAs. With increasing Tg values, viscosity increased rapidly and molecular weight increased slowly. As a result of the examination of coated films, it was found that 60˚ specular gloss, impact resistance, heat resistance and cross-hatch adhesion were good, and pencil hardness, drying time and pot life were poor.
        4,000원
        11.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high-solid coatings were prepared by blending the synthesized acrylic resin in the previous paper, and hexamethylene diisocyanate-trimer and curing it at room temperature. The characterization of the films of the prepared coatings was performed. The 60˚ specular gloss, impact resistance, cross-hatch adhesion, and heat resistance of the films proved to be good, and the pencil hardness, drying time, and pot-life proved to be slightly poor. From a viscoelastic measurement using a rigid-body pendulum, curing was accelerated with the Tg value.
        4,000원
        12.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylic resins (HSCs : EA/EMA/2-HEMA/CLA) which contain 80% solid content were synthesized by the copolymerization of monomers (ethyl acrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate) and functional monomer (caprolactone acrylate : CLA) which improves the crosslinking density and physical properties of films. The physical properties of the prepared acrylic resins (HSCs) containing CLA, are as follows: viscosity 1440~2630 cps ; Mn 1590~1660 ; and conversions, 81~86%, respectively. From the correlation of Tg values, viscosities, and Mn of the HSCs, it was found thst viscosity and Mn increased with Tg value.
        4,000원
        13.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the previous study, three kinds of monomers and the functional monomer, acetoacetoxyethyl methacrylate (AAEM), which could improve the film property and cross-linkage, were polymerzied into acrylic resin copolymers (HSA-98-20, HSA-98-0, HSA-98+20) containing 80% solid content. In this study, the high-solid coatings(HSA-98-20C, HSA-98-0C, HSA-98+20C) were prepared by the curing reaction between acrylic resins containing 80% solid content and isocyanate at room temperature. Various properties were examined for the film coated with the prepared high-solid coatings. The introduction of AAEM in the coatings enhanced the abrasion resistance and solvent resistance of coatings, which indicated the possible use of high-solid coatings for top-coating materials of automobile. The curing times measured by viscoelastic measurement were 350, 264, and 212 min for HSA-98-20C, HSA-98-0C, and HSA-98+20C, respectively. This shows that the curing times become shorter with increasing Tg values.
        4,000원
        14.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Copolymers (HSA-98-20, HSA-98-0, HSA-98+20) which are acrylic resin containing 80% solid content were synthesized by the reaction of monomers, including methyl methacrylate, n-butyl acrylate, and 2-hydroxyethyl acrylate with a functional monomer, such as acetoacetoxyethyl methacrylate (AAEM), which may improve in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, containing AAEM, are as follows : viscosity, 1420~5760cps ; number average molecular weight, 2080~2300 ; polydispersity index, 2.07~2.19 ; conversions, 88~93%, respectively. To prepare acryl resins, four kinds of initiators including α,α'-azobisisobutyronitirile (AIBN), di-tert-butyl peroxide (DTBP), t-amylperoxy-2-ethyl hexanoate (APEH), benzoyl peroxide (BPO) were used. The viscosity of the acrylic resins prepared with these initiators was increased in the order of DTBP〉APEH〉AIBN〉BPO. APEH was proved as a suitable initiator in this study. Shear rates of acrylic resins were constant in respect to viscosity. From these results, it would appear that the resins have Newtonian flow characteristics and good workability.
        4,000원
        15.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Room temperature cure type of acryl-urethane coatings with high solid content were prepared in this study. Acrylic resins with 80% solid content were cured with hexamethylene diisocyanate (Desmodure N-3600). The cure time of prepared coatings BEHCC-84 (BEHC-84 : Tg=0℃) and BEHCC-87 (BEHC-87 : Tg=30℃), measured by rigid-body pendulum method, was recorded 8.3 hours and 3.8 hours, respectively. Dynamic viscoelastic experiment also revealed the glass transition temperature of BEHCC-84 and BEHCC-87 to be Tg=40.3℃ and Tg=43.3℃, respectively. It was found that the adhesion and flexural properties among various propeties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.
        4,000원
        16.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-solid coatings were prepared by blending of previosly synthesized acrylic resins and hexamethylene diisocyanate-trimer and curing it at room temperature. The characterization of the films of the prepared coatings was performed. The impact resistance, cross-hatch adhesion, 60˚specular gloss, and heat resistance of the films proved to be good, and the pencil hardness and drying time proved to be slightly poor. Especially, there was a remarkable improvement in the heat resistance. This improvement may stem from the regular arrangement of ethyl groups introduced into the acrylic resin. As a result of Rigid-body pendulum visco-elasticity measurement, dynamic Tg values of cured films increased with dynamic Tg values.
        4,000원
        17.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylic resins (HSCs : EA/EMA/2-HEMA/CLA) which contain 70% solid content were synthesized by the copolymerization of monomers (2-hydroxyethyl methacrylate, ethyl acrylate, and ethyl methacrylate) and functional monomer (caprolactone acrylate : CLA) which improves the crosslinking density and physical properties of films. The physical properties of the prepared acrylic resins (HSCs) containing CLA, are as follows : viscosity 245~515 cps ; Mn 2670~2840 ; and conversions, 83~91%, respectively. From the correlation of Tg values, viscosities, and Mn of the HSCs, it was found that viscosity and Mn increased with Tg value.
        4,000원
        19.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high-solid coatings were prepared by blending the synthesized acrylic resin in the previous paper and hexamethylene diisocyanate-trimer and curing it at room temperature. The characterization of the films of the prepared coatings was performed. The impact resistance, 60℃ specular gloss, cross-hatch adhension, and heat resistance of the films proved to be good, and the pencil hardness and drying time proved to be slightly poor. Especially, there was a remarkable improvement in the heat resistance. This improvement may stem from the regular arrangement of ethyl groups introduced into the acrylic resin. From a viscoelastic measurement using a rigid-body pendulum, curing was accelerated with the Tg value. With the increase in Tg, log damp value was lowered and dynamic viscoelasic Tg of a cured film was increased.
        4,000원
        20.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A copolymer 〈HSAs : EA/EMA/2-HEMA/AAEM) which is an acrylic resin containing 70% solid content was synthesized by the reaction of monomers, including ethyl acrylate, ethyl methacrylate, and 2-hydroxyethyl methacrylate with a functional monomer, such as acetoacetoxyethyl methacrylate, which may give improvements in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, HSA containing AAEM, are as follows : viscosity, 203~550cps ; Mn, 2590~2850 ; and conversion, 82~89%, respectively. It was found from the plotting of Tg versus viscosity and Tg versus molecular weight that viscosity increased with Tg while number averaged molecular weight decreased with increasing Tg.
        4,000원
        1 2