검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 81

        1.
        2024.04 구독 인증기관·개인회원 무료
        3D 콘크리트 프린팅 기술은 거푸집 없이 콘크리트를 출력하고 제작하여 콘크리트 표면의 대부분이 외기에 노출되고, 이로 인해 콘크리트 내부 수분이 빠르게 증발하고 수축이 크게 발생한다. 또한, 결합 재 대비 낮은 골재 함량과 낮은 물/결합재 비(W/B)를 가지는 사용 배합의 특성상 수축으로 인한 균 열이 발생하기 쉽다. 이러한 3D 콘크리트 프린팅의 수축에 대한 문제는 섬유 혼입을 통해 해결할 수 있고, 부가적으로 적층성 향상의 이점을 얻을 수 있다. 본 연구에서는 이러한 섬유 보강 3D 프린팅 모르타르의 역학적 특성을 살펴보고자 섬유 혼입률을 변수로 실험하였다. 보강 섬유로는 PP섬유를 사 용하였고, 섬유 혼입률 0, 0.2, 0.5, 0.8%를 변수로 실험하였다. 갠트리 방식의 3D 프린터에 30 × 30 mm 사각형 개구부를 가진 노즐을 설치해 1300× 800mm 크기의 직사각형 형태로 모르타르를 출력 하였다. 호퍼 회전속도 6 rpm, 노즐 이동 속도 1500 mm/min을 적용하여 출력하였고, 1층 높이를 30mm로 출력하여 5층 적층하였다. 적층 완료 후 압축강도, 휨인장강도, 층간 부착강도를 측정하기 위 한 시험체를 각각 추출하였고, 28일 수중 양생 후 각 강도실험을 통해 역학적특성을 평가하였다.
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The tribology characteristics of the graphene coated PA6 were evaluated with scratch experiments. As a result, the following conclusions were obtained. The PA6 of the graphene coating shows a 0.1 improvement in friction coefficient and a lower abrasion depth than PA6 in the variable pressure-type scratch experiments. PA6 of the graphene coating showed a lower friction coefficient of 0.2 or more than PA6 in the friction coefficient in the static pressure scratch experiments, indicating that wear resistance was improved. In both the variable and the static pressure type scratch experiments, the tip depth of graphene-coated PA6 shows a thinner wear depth than PA6, showing the effect of graphene. The graphene content showed excellent tribology characteristics at 3%, and there was no difference in tribology characteristics at higher contents.
        4,200원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        태의 첨가량을 3수준(낮음 : 5.8 g, 중간 : 10.8 g, 높음 : 22.4 g)으로 하여 흘림뜨기로 초지한 태지의 지합과 강도적 특성을 비교하였다. 흘림뜨기에 의해 제조한 한지와 태지의 평량은 태의 첨가량에 관계없이 34.4~36.1 g/㎡였으며, 가둠뜨기 태지의 평량은 25.7 g/㎡였다. 지합지수는 첨가한 태의 양이 적을 때는 한지보다 양호하였으나 태의 첨가량이 증가할수록 지합지수도 증가하여 지합은 좋지 않았다. 태의 첨가에 의한 표면의 평활도와 거칠음도도 소량의 태 첨가에서는 미첨가 한지 보다 약간 좋았으나 태의 첨가량이 높았을 때는 평활도와 거칠음도 모두 미첨가 한지 보다 좋지 않았다. 태지의 인장지수는 한지에 비해 낮았으며, 태의 첨가량이 많아질수록 다소 감소하는 경향을 나타내었다. 파열강도도 소량의 태 첨가에서는 다소 증가하였으나 그 양이 많아지면 감소하였고, 내절도는 태의 첨가에 의해 다소 감소하는 것으로 나타났다. 이상과 같이 태를 첨가하여 흘림뜨기로 초지한 태지의 물성은 소량의 첨가 시 약간 우수해지기도 하나 전체적인 물성의 개선에는 기여하지 못한 것으로 판단되며, 그렇다고 태의 첨가로 인해 크게 종이의 물리적 성질을 크게 손상시키지도 않아 외형상의 아름다움과 독특함을 살린 용도로의 이용을 도모하는 것이 바람직할 것으로 판단된다.
        4,000원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 PVA(Poly Vinyl Alcohol)섬유와 GO(Graphene Oxide)를 혼입한 섬유보강 콘크리트(FRC)의 역학적 특성 을 평가하고자 하였다. GO와 PVA 섬유를 동시에 혼입한 FRC 각각의 재료를 단일로 사용하였을 때보다 기대효과가 다소 미흡 하였지만, 각 재료의 하이브리드화로 인장강도가 개선되면서 PVA 섬유 혼입률 0.1∼0.3%과 GO 혼입률 0.025%에서 우수한 효 과를 얻을 수 있었다. 특히 PVA 섬유는 0.3%로 혼합하였을 때 부작용을 최소화하면서 최대의 효과를 보였지만, 적절한 GO 배 합비를 조절할 필요가 있으며 FRC내 GO와 PVA 섬유의 최적배합을 구하기 위한 추가적인 연구가 필요할 것으로 사료된다.
        4,000원
        5.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.
        4,000원
        6.
        2023.05 구독 인증기관·개인회원 무료
        Integrity evaluation scheme for Spent Fuel (SF) dry storage has been developed under transportation failure modes. This method especially considered the degradation characteristics of Spent Fuel (SF) during dry storage such as radial and circumferential hydride content, hydride volume fraction, oxide thickness, etc. Hydride and zircaloy cladding are considered as material composite system, using correlation models related to material properties. Critical Strain Energy Density (CSED) is compared with Strain Energy Density (SED), to evaluate cladding integrity. CSED serves as material characteristics, while SED can be considered as boundary condition. To calculate the CSED of cladding in the lateral failure mode, circumferential hydride concentration is used. SED is calculated considering both the bending moment and axial load. On the other hand, in the longitudinal failure case, fuel rod temperature, internal pressure, hoop stress, radial hydride concentration is used to calculate CSED. And pinch force (contact) was considered to evaluate SED. Model validations were conducted by comparing hot cell SF test and existing validated evaluation results. To separately handle normal transportation conditions from hypothetical accident conditions, SED according to stress-strain analysis results was separated into elastic and plastic regions. As a result of applying this scheme for 14×14 SF, failure probability of normal condition was zero, which is the similar result with DOE and same with EPRI. Regarding accident condition, lateral case showed similar result, but longitudinal case showed different but reasonable result, which was due to the different analysis conditions. The proposed methodology which was indigenously developed through this study is named as K-method.
        7.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        나노복합재료는 다기능성과 고성능을 가지는 혁신적인 복합재료이다. 나노 스케일 필러의 혼입함으로써 복합재료의 전기적, 역학 적 및 열적 특성이 크게 향상될 수 있기 때문에 나노 스케일 필러를 이용한 나노복합재료의 특성화에 관한 다양한 연구가 광범위하게 수행되어 왔다. 특히, 탄소계 나노 필러(탄소나노튜브, 카본블랙, 그래핀 나노판 등)를 활용하여 전기/역학적 특성을 향상시킨 나노복 합소재 개발에 관한 연구들이 복합재료 분야에서 큰 관심을 받고있다. 본 논문은 실제 응용에 필수적인 나노복합재료의 전기/역학적 특성을 문헌조사를 통해 고찰하는 것을 목표로 한다. 또한, 나노복합재료의 전기/역학적 특성 예측을 위한 최신 멀티스케일 모델링 연 구들에 대해서 검토하고, 멀티스케일 모델링에 대한 과제와 향후 발전 가능성에 대해서 논의한다.
        4,000원
        9.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Composite materials offer distinct and unique properties that are not naturally inherited in the individual materials that make them. One of the most attractive composites to manufacture is the aluminum alloy matrix composite, because it usually combines easiness of availability, light weight, strength, and other favorable properties. In the current work, Powder Metallurgy Method (PMM) is used to prepare Al2024 matrix composites reinforced with different mixing ratios of yttrium oxide (Y2O3) particles. The tests performed on the composites include physical, mechanical, and tribological, as well as microstructure analysis via optical microscope. The results show that the experimental density slightly decreases while the porosity increases when the reinforcement ratio increases within the selected range of 0 ~ 20 wt%. Besides this, the yield strength, tensile strength, and Vickers hardness increase up to a 10 wt% Y2O3 ratio, after which they decline. Moreover, the wear results show that the composite follows the same paradigm for strength and hardness. It is concluded that this composite is ideal for application when higher strength is required from aluminum composites, as well as lighter weight up to certain values of Y2O3 ratio.
        4,000원
        10.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-topowder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.
        4,000원
        11.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and characterization of graphene (Gr)-reinforced aluminium alloy 7075 (AA7075) microcomposites and nanocomposites are reported in this work. Composites are fabricated by mechanical alloying process at wet conditions. The bulk composites are prepared by uniaxial die pressing to get higher densification and sintered in an inert atmosphere. Density of the nanocomposites is higher than the microcomposites due to the reduction of grain size by increased milling time. X-ray diffraction (XRD) analysis confirms graphene interaction with the AA7075 matrix lattice spaces. The effective distribution of graphene with aluminium alloy is further confirmed by the Transmission Electron Microscopy (TEM) analysis. The hardness of the composites proportionally increases with the graphene addition owing to grain refinement. Wear morphology is characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Microcomposites reveal abrasive and ploughing wear mechanism of material removal from the surface. Nanocomposites show adhesive wear with delamination and particle pull-out from the material surface.
        4,300원
        12.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조와 사육환경이 동일한 3개의 돈방(room A~C)에서 48일 동안 비육돈의 암모니아 농도 및 환기량을 모니터링하여 배출계수를 산정하였다. 실험 결과, 온도 22.5℃, 습도 53.9% 환경에서 평균 암모니아 순발생 농도 5.93 ppm, 환기량 23.7 m3/h·pig로 나타났다. 일별 상관관계 분석결과, 암모니아 농도는 온도와 음의 상관관계(R2: -0.65 ~ -0.53)를 가지는 것으로 나타났으며, 환기량은 암모니아 농도에 거의 영향을 미치지 않는 것으로 나타났다. 암모니아 농도는 이른 오전을 기점으로 서서히 증가 경향을 보이다가 12~13시경 최댓값에 도달하였고, 상호 상관도가 높은 온도, 습도, 환기량의 경우 14~15시에 최댓값을 갖는 것으로 분석되었다. 시간별 데이터 상관관계 분석결과, 암모니아 배출량에 영향을 미치는 요소는 암모니아 농도(R2=0.71)와 환기량(R2=0.61)으로 이 중, 암모니아 농도가 더 상관성이 높은 것으로 분석되었다. 암모니아 배출계수는 2.28 g/d·pig로 분석되었다.
        4,000원
        13.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/ at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.
        4,000원
        14.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of ammonia during the growing period of pigs in a facility with a mechanical ventilation system were analyzed, and the emission factor was calculated. Real-time ammonia concentration was measured using photoacoustic spectroscopy equipment, and a ventilation measuring device was fabricated to measure the amount of air vented from an exhaust fan according to the operation rate. All data were collected as one-hour averages. The mean ammonia concentration, indoor temperature, and ventilation rate was 1.44~2.08 ppm, 25.5~26.4oC, and 24~32 m3/h per pig, respectively. Both concentration and ventilation rate are important factors in terms of emission management, but correlation analysis shows that the impact of concentration is higher than that of ventilation. Using ammonia concentration and ventilation data, the ammonia emissions per pig were calculated by considering the number of pigs (0.25~1.74 g/day·pig). The final ammonia emission factor yielded a value of 0.81 g/day·pig.
        4,000원
        15.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 μm (450 foam) and 1220 μm (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10−3 /s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.
        4,000원
        16.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using ‘NISA2016’ software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.
        4,000원
        19.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended “green material.” Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.
        4,000원
        20.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, SM45C-STKM13B hollow shaft of different thickness was joined by friction welding. After friction welding, we treated to specimen of annealing(post-weld heat treatment). The specimens were tested as-welded and post-weld heat treatment(PWHT). The mechanical properties including tensile test and vickers micro-hardness were examined. And then, the mechanical properties were compared for as-welded and PWHT in SM45C to STKM13B. Microstructure of joining part were examined in the weld interface and weld region and heat affected zone and base metal of weld parts.
        4,000원
        1 2 3 4 5