This study investigates of repeated freeze-thaw (FT) cycles on the color, pH, and oxidative stability of vacuum-packaged chicken thigh meat. Samples were evaluated at Fresh, Frozen (2 weeks), FT1 (2-times FT, 4 weeks), and FT2 (3-times FT, 6 weeks). FT1 resulted in a higher pH, but the pH was slightly reduced in FT2. Oxidative stability declined with each cycle, as evidenced by significant increases in thiobarbituric acid reactive substances (TBARS), carbonyl content, and peroxide value (POV). Meanwhile, thiol content decreased notably. Color parameters were also affected by FT cycles. Redness (a* ) decreased in the frozen group but increased in subsequent cycles. Lightness (L* ) fluctuated, with a significant increase after FT2, and yellowness (b* ) showed slight increases and subsequent decreases. Chroma (c*) and hue angle (h°) also fluctuated due to repeated freeze-thaw cycles. Furthermore, correlation analysis revealed strong positive associations between TBARS, carbonyls, POV, and pH, while thiol content showed strong negative correlations with these oxidative markers, reinforcing the oxidative degradation trend. This comprehensive analysis illustrates the multifaceted impacts of freeze-thaw processes on the color, pH, and oxidation markers of chicken thigh meat, emphasizing the importance of understanding these effects for proper storage and safety.
Background: This study evaluated the impact of intra-abdominal lidocaine and systemic meloxicam, alone and in combination, on oxidative stress biomarkers in healthy dogs undergoing elective ovariohysterectomy (OHE). Methods: Twenty-eight female dogs presenting to the Aydın Adnan Menderes University Veterinary Teaching Hospital were randomly assigned to one of four groups (n = 7 each): Control (OHE only), Lidocaine (1 mg/kg sprayed intraperitoneally at surgical sites), Meloxicam (0.2 mg/kg SC post-closure), and Lidocaine + Meloxicam (both treatments as above). Blood was sampled pre-operatively and at 2, 12, and 24 hours post-surgery. Serum concentrations of malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px) were quantified as indices of lipid peroxidation and antioxidant capacity. Results: In the combined-treatment group, MDA, CAT, and GSH-Px levels declined significantly over time, indicating attenuated oxidative stress. In contrast, lidocaine alone produced a significant time-dependent decrease only in CAT activity, while meloxicam alone did not significantly alter any marker. Conclusions: These findings suggest that the synergistic use of intraperitoneal lidocaine with systemic meloxicam more effectively mitigates postoperative oxidative stress than either agent alone, and may represent a beneficial analgesic–antiinflammatory strategy in canine OHE.
This study investigates the acute toxicity of sublethal tributyltin (TBT) exposure in the marine polychaetes Perinereis aibuhitensis by measuring changes in mortality, burrowing activity, acetylcholinesterase (AChE) function, and antioxidant defense mechanisms. The 96h-LC50 of TBT was established at 23.7 μg L⁻¹. Following exposure to 1 μg L⁻¹ of TBT led to a dose-dependent reduction in burrowing behavior and AChE activity in polychaetes. Elevated levels of malondialdehyde (MDA) and pronounced reduction of glutathione (GSH) contents explained significant oxidative stress. The major antioxidant enzymes, including GSH peroxidase, GSH reductase, catalase, and superoxide dismutase, were also significantly suppressed following TBT exposure. These findings indicate that TBT-induced acute toxicity compromises physiological functions and undermines antioxidant defense system in polychates.
Thermal decomposition of low-density polyethylene (LDPE) was monitored by thermogravimetry under N2 atmosphere in the presence of solid acid catalysts such as alumina (α-Al2O3, γ-Al2O3), crystalline silica-alumina (SA, molar ratio of Si/Al = 0.19) and amorphous silica-alumina catalysts (ASA, molar ratio of Si/Al = 4.9). Crystal structure and surface area of solid acid catalysts were measured by XRD and BET, respectively. The strength and distribution of acid sites of solid acid catalysts were estimated by NH3- TPD. It was observed that total acidity strength is in the order of ASA (1.77 μmmol NH3/ g) > AS (1.42 μmol NH3/ g) > γ-Al2O3 (1.06 μmol NH3/ g) > α-Al2O3 (0.06 μmol NH3/ g). Thermal degradation behavior of LDPE with and without solid acid catalyst was monitored by TGA, where heating rates (β) of 5, 10, and 20 °C/min were employed under an inert atmosphere, and their activation energies ( Ea), onset temperatures ( Tinitial), decomposition temperatures ( Tdecomp) were calculated and compared. The activation energy ( Ea) was evaluated using the Coats-Redfern method. Solid acid catalysts with stronger acidity and higher surface area showed a decrease in activation energy and onset temperature. Activation energy of LDPE over ASA catalyst is decreased to 97.3 kJ/mol from thermal decomposition of LDPE without catalyst of 117.2 kJ/mol under heating rate of 10 °C/min. The isothermal decomposition of LDPE was monitored at 300 °C for 3 h with a heating rate of 10 °C/min, where 13.1% and 24.2% wt. loss were observed over SA and ASA, respectively, while only 0.7% wt. loss was observed for LDPE without a solid acid catalyst.
We report the synthesis of bimetallic Cu-Au nanotubes (NTs) and Cu@Au core-shell nanowires (NWs) for use as anti-oxidative electrodes. The fabrication involved two key approaches: galvanic replacement to produce Cu-Au NTs and the physical deposition of Au to form Cu@Au core-shell NWs. The galvanic replacement process generated hollow NTs through the Kirkendall effect, driven by the unequal diffusion rates of Cu and Au during the redox reaction. In contrast, the physical deposition of Au, facilitated by fast reduction kinetics using L-ascorbic acid, enabled the formation of a Au shell encapsulating the Cu NWs, preserving their structural integrity. Morphological and structural analyses confirmed the successful formation of both nanostructures. While the Cu-Au NTs exhibited hollow interiors and increased dimensions, the Cu@Au NWs displayed a solid core-shell morphology with minimal diameter increase. Electrical conductivity and thermal stability tests revealed the superior performance of the Cu@Au NWs. The sheet resistance of Cu@Au NWs remained as low as 4 Ω sq-1 and showed exceptional thermal stability, with minimal resistance variation (R/Ro ~1.36) even after 36 h at 120 °C under ambient conditions. In contrast, the Cu-Au NTs suffered rapid oxidation and structural instability. The physical deposition approach holds significant promise for the development of robust, low-resistance electrodes for long-term applications in harsh environments.
We investigated the stress-induced changes in the lipid and hormonal concentrations in plasma, including cytochrome P450 (CYP)-derived oxidative stress in the liver, and the anti-stress effect of Korean Red Ginseng (KRG) water extract in mice. Stress induction using restraint increased the levels of corticosterone (CORT), glucose, total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) while decreasing in the levels of insulin and high-density lipoprotein-cholesterol (HDL-C), compared with those of unstressed mice. Restraint-stress also increased the generation of reactive oxygen species (ROS) in plasma by 5.4-fold. Moreover, the stress resulted in a 2.8-fold higher production of C-reactive protein (CRP) than the control group. In addition, the catalytic activities of CYP1A2 and CYP3A4 in the liver microsomes were stimulated by 5.5- and 3.8-fold, respectively, and concomitant ROS formation was elevated by 4.3-fold in the liver extract, compared to the normal group. In contrast, the KRG treatment (5, 20, or 50 mg/kg/day) to stress-exposed 3 groups alleviated the increased CORT, TC, LDL-C, ROS, and CRP levels and restored the decreased insulin concentrations. The enhanced each ROS in the plasma and liver, and the CYP enzyme activities were also attenuated in KRG-treated mice in a concentration-dependent manner. In conclusion, these results suggest that KRG ameliorates stress-induced detrimental effects on the plasma and liver of treated mice.
Drought is one of the environmental factors inhibiting plant productivity and growth, leading to oxidative damage. This study aims to identify the role of sodium hydrosulfide (NaHS) as a hydrogen sulfide (H2S) donor in drought stress tolerance in Brassica napus. Drought-induced stress symptoms appeared eight days after treatment, showing wilted leaves and a significant reduction of leaf water potential. Drought-induced increase of lipid peroxidation was significantly reduced by NaHS application. NaHS-treated plants mitigated stress symptoms under drought conditions by reducing hydrogen peroxide (H2O2) content, confirmed with H2O2 localization in situ. Furthermore, NaHS promotes photosynthetic activity by maintaining chlorophyll and carotenoid content, thereby supporting plant growth under drought conditions. Pyrroline-5-carboxylate and proline contents were significantly increased by drought but further enhanced by NaHS treatment, indicating the important roles of proline accumulation in drought stress tolerance. In conclusion, this study provides valuable insight into the roles of NaHS in alleviating drought stress by reducing oxidative stress and promoting proline accumulation. Therefore, NaHS may serve as an effective strategy to enhance crop production under drought-stress conditions.
Background: Aflatoxin B1 (AFB1) is a toxic metabolite generated by Aspergillus species and is commonly detected during the processing and storage of food; it is considered a group I carcinogen. The hepatotoxic effects, diseases, and mechanisms induced by AFB1 owing to chronic or acute exposure are well documented; however, there is a lack of research on its effects on the intestine, which is a crucial organ in the digestive process. Dogs are often susceptible to chronic AFB1 exposure owing to lack of variation in their diet, unlike humans, thereby rendering them prone to its effects. Therefore, we investigated the effects of AFB1 on canine small intestinal epithelial primary cells (CSIc). Methods: We treated CSIc with various concentrations of AFB1 (0, 1.25, 2.5, 5, 10, 20, 40, and 80 μM) for 24 h and analyzed cell viability and transepithelial-transendothelial electrical resistance (TEER) value. Additionally, we analyzed the mRNA expression of tight junction-related genes (OCLN, CLDN3, TJP1, and MUC2), antioxidant-related genes (CAT and GPX1), and apoptosis-related genes (BCL2, Bax, and TP53). Results: We found a significant decrease in CSIc viability and TEER values after treatment with AFB1 at concentrations of 20 μM or higher. Quantitative polymerase chain reaction analysis indicated a downregulation of OCLN, CLDN3, and TJP1 in CSIc treated with 20 μM or higher concentrations of AFB1. Additionally, AFB1 treatment downregulated CAT , GPX1, and BCL2. Conclusions: Acute exposure of CSIc to AFB1 induces toxicity, and exposure to AFB1 above a certain threshold compromises the barrier integrity of CSIc.
To understand the detrimental effects of triclosan on Java medaka (Oryzias javanicus) embryos, fertilized embryos were exposed to different concentrations (1, 10, 50, 100, 200, 400, 600, 800, and 1,000 μg l-1) of triclosan until hatching. Then, we examined the survival rate and developmental parameters as well as alterations in antioxidant constituents and DNA damage markers. The results showed dose-dependent mortality, hatching delays, and developmental abnormalities in the embryos. Additionally, there were significant increases in oxidative stress parameters and antioxidant responses, along with elevated DNA damage. These findings suggest that sublethal concentrations of triclosan induce toxic effects through oxidative stress on Java medaka embryos, as evidenced by changes in in vivo parameters and biochemical constituents.
Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 μM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 μM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.
Effects of glutamic acid (Glu) and monosodium glutamate (MSG) on oxidative stability of oil-in-water (O/W) emulsions with different emulsifier charges during riboflavin (RF) photosensitization were evaluated by analyzing headspace oxygen content and conjugated dienes. Cetyltrimethylammonium bromide (CTAB), Tween 20, and sodium dodecyl sulfate (SDS) were used as cationic, neutral, and anionic emulsifiers, respectively. Glu acted as an antioxidant in CTAB- and Tween-20-stabilized O/W emulsions during RF sensitization, whereas Glu acted as prooxidants in SDS-stabilized O/W emulsions in the dark. However, adding MSG did not have a constant impact on the degree of oxidation in O/W emulsions irrespective of the emulsifier charge. In RF-photosensitized O/W emulsions, the emulsifier charge had a greater influence on antioxidant properties of Glu than on those of MSG.
In this research, the marine medaka Oryzias javanicus underwent a 96 h exposure to two concentrations of the red tide dinoflagellate Karenia mikimotoi (1,000 and 5,000 cells mL-1), and the temporal variations in biochemical responses related to antioxidant and immunity parameters were assessed in the liver tissue. The study revealed a significant increase in ichthyotoxicity with elevated cell concentrations of K. mikimotoi, especially evident at 96 h in marine medaka exposed to 5,000 cells mL-1. At 1,000 cells mL-1 of K. mikimotoi, the opercular respiratory rate showed a significant increase, whereas exposure to 5,000 cells mL-1 resulted in a lowered rate. The intracellular malondialdehyde content was significantly elevated in response to both cell concentrations at 96 h. Regarding glutathione content, levels were significantly increased by exposure to both cell concentrations. Catalase and superoxide dismutase enzymatic activities experienced an increase at 1,000 cells mL-1 of K. mikimotoi, while their activities were reduced at 5,000 cells mL-1 at 96 h. The analysis of two immunity parameters, alternative complement pathway and lysozyme, demonstrated significantly reduced activities in the liver tissue exposed to 5,000 cells mL-1 of K. mikimotoi. These findings aim to enhance the understanding of K. mikimotoi toxicity in marine fish by offering insights into biochemical responses associated with harmful algal blooms.
Background: Brassica oleracea var. italica (broccoli), a rich source of antioxidants,
can prevent various diseases and improve human health. In this study, we investigated
the antioxidative effects of broccoli sprout extract on oxidative stress induced by
lipopolysaccharide and cisplatin in cell and organ tissue models.
Methods: Antioxidative effect of BSE was evaluated using DPPH and ABTS in RAW
364.7 cells, and effects of BSE on testes were investigated using Cisplatin-induced
testicular damage model with an in vitro organ culture system.
Results: The DPPH assay showed that the antioxidant activity of the alcoholic
broccoli sprout extract was higher than that of the water extract. Additionally, the
expression levels of antioxidation-related genes, Nrf2 , Gsr , HO-1, and catalase , were
significantly increased in broccoli sprout extract-treated RAW 264.7 cells, and the
extract suppressed lipopolysaccharide-induced mitochondrial dysfunction. Based on
the results in the RAW 264.7 cell culture, the antioxidative effects of the extracts were
investigated in a mouse testis fragment culture. The expression of Nrf2 , HO-1 , and
Ddx4 was clearly decreased in cisplatin-treated mouse testis fragments and not in
both broccoli sprout extract- and cisplatin-treated mouse testis fragments. In addition,
the oxidative marker O-HdG was strongly detected in cisplatin-treated mouse testis
fragments, and these signals were reduced by broccoli sprout extract treatment.
Conclusions: The results of this study show that broccoli sprout extracts could serve
as potential nutraceutical agents as they possess antioxidant effects in the testes.
Cardiovascular disease remains a leading global cause of mortality, demanding effective prevention and management. This systematic review explores the impact of lycopene, prevalent in various fruits, on cardiovascular health. Thirteen randomized and controlled trials were analyzed, involving 385 participants with cardiovascular risk factors. Notable findings included significant blood pressure reductions, particularly among hypertensive individuals, and favorable alterations in lipid profiles. Lycopene interventions also demonstrated potential in mitigating oxidative stress and inflammation markers. While these findings show promise, more rigorously designed studies are essential to determine optimal dosages and durations for precise cardiovascular benefits. In conclusion, lycopene shows potential in managing cardiovascular risk factors, and its role in blood pressure regulation, lipid profile improvement, and antioxidant and anti-inflammatory effects is encouraging. Nonetheless, further research is warranted to provide definitive guidance on integrating lycopene to enhance cardiovascular health.
Despite numerous advances in in-vitro embryo production (IVP), many documented factors have been shown to influence the development of mammalian preimplantation embryos and the success of IVP. In this sense, elevated levels of reactive oxygen species (ROS) correlate with poor outcomes in assisted reproductive technologies (ART) due to oxidative stress (OS), which results from an imbalance between ROS production and neutralization. Indeed, excessive production of ROS compromises the structural and functional integrity of gametes and embryos both in vivo and in vitro. In particular, OS damages proteins, lipids, and DNA and accelerates cell apoptosis. Several in-vivo and in-vitro studies report an improvement in qualityrelevant parameters after the use of various antioxidants. In this review, we focus on OS and the source of free radicals and their effects on oocytes, sperm, and the embryo during IVP. In addition, antioxidants and their important role in IVP, supplementation during oocyte in vitro maturation (IVM), in vitro culture (IVC), and semen extenders were discussed. Nevertheless, various methods for determining the level of ROS in germ cells have been briefly described. Still, it is crucial to develop standardized antioxidant supplement systems to improve overall IVP success. Further studies should explore the safety, efficacy, mechanism of action, and combination of different antioxidants to improve IVP outcomes.
산화적 스트레스는 세포 및 조직 손상을 통해 피부의 탄력 및 보습 기능 저하, 피부 노화 촉진 을 비롯한 다양한 피부질환을 일으킨다. 본 연구의 목적은 인간 피부각질세포 (HaCaT keratinocyte)에서 산화적 스트레스에 대한 붉은 토끼풀 추출물의 효능을 검토하여, 피부에 효과적으로 사용할 수 있는 기능 성 소재로서의 활용 여부를 확인하고자 하였다. 본 연구에서는 붉은 토끼풀 추출물이 인간 피부각질세포에 서 산화적 스트레스에 따른 세포사를 억제시키는 것을 확인하여, 이를 조절하는 보호기전을 규명하였다. 이는 붉은 토끼풀 추출물이 Caspase-3 비활성, 세포사 촉진단백질 Bax 발현 억제, 세포생존 촉진단백질 Bcl-2 발현 증가 및 MAPK 신호전달계 단백질의 인산화 억제를 통해 H2O2에 의해 유도된 산화적 스트레 스를 보호할 수 있다는 것을 확인하였다. 따라서 붉은 토끼풀 추출물은 피부의 산화적 손상을 감소시키는 유용한 소재로 평가되며, 이는 피부보호 및 미용을 위한 다양한 제품 및 산업에 활용 가능성이 높은 것으로 판단된다.