This study was conducted to investigate the quality characteristics of rose pasta sauce added with plant-based meat substitutes and plant-based ingredients. The rose pasta sauces were prepared by varying the proportions of tomato sauce and soy milk-based mayonnaise. As the proportion of soy milk mayonnaise increased and the proportion of tomato sauce decreased, the pH increased and the total acidity decreased. The total polyphenol content of rose pasta sauce ranged from 122.59 to 168.09 mg/100 mL, with higher values found in pasta sauces containing soy milk mayonnaise, particularly in the B treatment (70% tomato sauce, 30% soy milk mayonnaise) and tannin content was also highest in the B treatment (117.61 mg%). ABTS radical scavenging activity ranged from 34.90% to 40.62%, with significantly higher values observed in A, B, and C. DPPH radical scavenging activity ranged from 63.42% to 84.46%, with the highest activity found in the A treatment, followed by the B treatment. These results suggest that the development of rose pasta sauces with plant-based ingredients and meat substitutes can offer diverse applications and potential in the food industry.
국내에서 제조되어 유통되는 식물성 대체육을 대상으로 일반성분(수분, 단백질, 지방), 지방의 산패도, 지방산의 조 성, 아플라톡신, 중금속 함량을 분석하였다. 그 결과 한번 익힌 후 건조된 형태의 식물성 대체육보다 익히지 않고 수분이나 지방에 의해 성형과정을 거친 냉동제품에서 상 대적으로 많은 양의 지방을 함유하고 있음을 확인할 수 있었다. 조지방 함량이 1 g을 넘는 시료를 대상으로 지방 의 산패도(산가, 과산화물가)를 측정했다. 그 결과 일부 시 료에서 높은 산가 및 과산화물가가 측정되었으나 식품공 전상에 대체육에 대한 정확한 분류가 되어있지 않아 산패 도에 대한 안전성을 판단하기 위한 규격이 필요해 보인다. 가스크로마토그래피를 사용하여 지방산 조성을 분석한 결 과 대부분은 불포화지방산이 차지하고 있지만, 일부 포화 지방산의 함량이 높은 시료가 있었다. 포화지방산 및 불 포화지방산의 함량이 높은 식물성 대체육을 식물성 유지 를 사용하여 가열조리를 거쳐 섭취하게 된다면, 많은 양 의 지방을 섭취하게 될 수 있음을 예측할 수 있다. 또 가 스크로마토그래피를 사용한 지방산 분석법을 통해 식물성 대체육에 동물 유래 지질이 함유되어있지 않음을 확인할 수 있었다. 이는 이후에 식물성 대체육에 대한 영양표시 성분 및 실제성분의 대조 시에 활용될 수 있음을 시사한 다. 식물성 대체육에 대하여 아플라톡신을 분석한 결과 현 재 식품공전에 제시된 농산물 중 아플라톡신 기준규격에 대하여 적합인 수준이나 미량 검출되는 것을 확인하였다. 중금속의 분석 결과 모두 불검출이었으나 환경요인 및 원 재료에 따라 중금속의 오염이 의심될 시에 중금속 분석을 진행할 수 있을 것으로 판단된다. 이러한 실험결과를 통 해 국내에 유통되고 있는 일부 식물성 대체육에 대한 안 전성을 확인하였으나 산가, 과산화물가, 아플라톡신, 중금 속은 대체육에 대하여 구체적인 분류 및 적합 규격이 마 련되어 있지 않아 적합 판정시에 비슷한 성향을 가진 식 품군에 대조하여 판단해야 하는 어려움이 있었다. 따라서 기존의 기준에 대하여 검토 또는 변경을 거쳐 식물성대체 육에 대한 관리기준이 설정한다면 유사한 식품군의 건전 성 및 적합성을 유지하는 것에 도움이 될 것으로 판단된다.
Physicochemical properties and storage stability of plant-based alternative meat prepared with low-fat soybean powder (LPAM) treated by supercritical-CO2 and those of full-fat soybean powder (FPAM) were compared. Ash and crude protein contents were higher in LPAM than in FRAM. Water absorption capacity and oil absorption capacity were significantly higher in LPAM than in FPAM. Water binding capacity was higher in LPAM than in FPAM during a 20 days storage period at 5℃ and pH was significantly lower in LPAM than in FPAM after a 5~10 days storage period. Hardness, gumminess and chewiness significantly increased with the increase in the storage period, and the three were significantly higher in LPAM than in FPAM after 10 days and 20 days of storage. The acid value showed no remarkable difference according to the storage period in LPAM; however, it was significantly higher in FPAM than in LPAM after 20 days of storage. The peroxide value and TBA value were significantly increased according to the storage period, and were significantly lower iin LPAM than in FPAM during all the storage periods. Therefore, the use of low-fat soybean powder may be effective in improving oxidative stability during storage in the production of plant-based alternative meat.
This study aims to investigate the physicochemical properties of meat analogs by using high and low moisture extrusion processes to create a plant-based analog burger patty material. The isolated soy protein blends of low- and high-meat analogs (LMMA and HMMA) were texturized using the twin-screw extruder equipped with a cooling die. The highest hardness, cohesiveness, chewiness, and cutting strength were observed in beef, but the highest stringiness was indicated in HMMA. The highest integrity index was seen in beef, while LMMA had the highest nitrogen solubility index (NSI). LMMA also had the highest water holding capacity (WHC) and water absorption capacity (WAC), whereas beef had the highest oil absorption capacity (OAC). LMMA had the highest emulsifying activity (EA) and emulsion stability (ES) in emulsifying properties. Further, the highest protein digestibility was revealed in LMMA. This study suggested that extrusion process types influence the quality of meat analog, which could be the elementary source for manufacturing the analog burger patty.
This study aims to investigate protein consumption market trends in Korea. Protein consumption was divided according to the protein source into meat, fishery, and plant-based protein. To accomplish the goal of this study, food purchase data from 525 households panels collected by the Rural Development Administration over the last 10 years were used. The results of the study showed an increase or decrease in protein consumption by protein type over the last 10 years, and a reason to explain this change has been suggested. Specifically, this study found a dramatic increase in the consumption of several proteins, including beef sirloin, beef tenderloin, seasoned beef & steak, pork belly, pork shoulder, pork neck, seasoned pork, pork cutlet, sweet and sour pork, canned ham, chicken drumstick, chicken breast, dak gangjeong, Chinese fried chili chicken, salmon, eel, abalone, squid, octopus, webfoot octopus, octopus minor, canned whelk, tofu, cold bean soup,and plant-based milk. Some items showed no increase in consumption (such as beef jerky, pork rib, sausage, bacon, whole raw chicken, cutlass fish, oyster, fish cake, crab stick, surimi sausage,and canned fishery), whereas a few items showed decreased consumption (e.g., mackerel, pollack, cod,and canned tuna)
It is well known that the world population is increasing at an incredible pace; subsequently, worldwide food production without compromising the ecosystem is an enormous challenge for the global community. From the beginning of human civilization, meat plays a vital role in acquiring proteins and other nutrients. Despite the indispensable part of the meat in the human diet, it is also considered a critical factor in environmental alterations, greenhouse gas emissions, animal welfare, and land water usage. The excessive use of natural resources and extensive animal production causes greenhouse gas emissions, which triggered reduced meat consumption and the need for more novel meat alternatives. To overcome the extraordinary demand for red meat, the phenomena of meat alternatives or meat substitutes evolved. Subsequently, meat analogs express a higher trend with low cost, safe consumption, and meaty structure and texture. Meat substitutes are predominantly vegetable centered food products that comprise proteins from pulses, cereal, microorganisms, and other fillers and flavorings mediators. Moreover, Meat products with texturized vegetable protein, mushroom, wheat gluten, pulses are considered an excellent source of as a substitute for animal protein. Additionally, mycoprotein had an impressive profile, including higher protein, low fat, health-promoting agents, with good taste and texture. However, there remains a gap in research articles focusing on the regular consumption of meat substitutes. In the current review, an attempt has been made to summarize various types of meat substitutes, different protein sources, production preparation methods, nutritional, functional properties, including current and future perspectives of meat alternatives.
Chemical cross-linking of different plant protein-based meat analogues was examined based on protein solubility of 8 different buffer solutions. The specific chemical bond and their interactions were further analyzed. Isolated soy protein (ISP), mung bean protein (MBP), peanut protein (PNP), pea protein (PP) and wheat gluten (WG) were texturized using a co-rotating twin-screw extruder at 50% moisture content. The results showed that protein solubility of meat analogues significantly decreased after extrusion, compared to their raw materials (P<0.05). The protein solubility of meat analogues increased with increasing reagent in buffer solutions. Hydrophobic interactions, hydrogen bonds, disulfide bonds and their interactions were found in the structure of meat analogues. The highest amount of covalent bond was observed in PP-meat analogues followed by ISP, WG, PNP, and the lowest MBP-meat analogues. The study demonstrated that PP are valuable raw materials for the development of meat analogue, which could promote high cross-linking bonds.