검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 203

        2.
        2023.11 구독 인증기관·개인회원 무료
        The increasing accumulation of spent nuclear fuel has raised interest in High-Level Waste (HLW) repositories. For example, Sweden is under construction of the KBS-3 repository. To ensure the safety of such HLW repository, various countries have been developing assessment models. In the Republic of Korea, the Korea Atomic Energy Research Institute has been developing on the AKRS model. However, traditional safety assessment models have not considered the fracture growth in the far-field host rock as a function of time. As repository safety assessments guarantee safety for million years, sustained stress naturally leads to the progressive growth of fractures as time goes on. Therefore, it becomes essential to account for fracture growth in the surrounding host rock. To address this, our study proposes a new coupling scheme between the Fracture growth model and the radionuclide transport model. That coupling scheme consists of the Cubic Law model as a fracture growth function and the GoldSim code which is a commercial software for radionuclide transport calculations. The model that adopting such fracture growth functions showed an increase of up to 15% in the release of radionuclide compared to traditional assessment models. our observations indicated that crack growth as a function of time led to an increase in hydraulic conductivity that allowed more radionuclide transport. Notably, these findings show the significance of adopting fracture growth models as a critical element in evaluating the safety of nuclear waste repositories.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        4.
        2023.11 구독 인증기관·개인회원 무료
        A disposal system for spent nuclear fuel mainly divides into two parts; Engineered barriers include spent nuclear fuel, canister, buffer and backfill and natural barriers mean a host rock surrounding engineered barriers. If radionuclides released from a repository, they can migrate to the ecosystem. Sorption plays an important role in retarding the migration of released radionuclides. Hence, the safety assessment for the disposal of a spent nuclear fuel should consider the migration and retardation of radionuclides in geosphere. Distribution coefficient is one of input parameters for the safety assessment. In this work, distribution coefficients for crystalline rock as a natural barrier were collected and evaluated for the purpose of safety assessment for the deep geological disposal of a spent nuclear fuel. The radionuclides considered in this work are as follows; alkali and alkaline earth metals (Cs, Sr, Ba), lanthanides (Sm), actinides (Ac, Am, Cm, Np, Pa, Pu, Th U), transition elements (Nb, Ni, Pd, Tc, Zr), and others (C, Cl, I, Rn, Se, Sn). The sorption of radionuclides is influenced by various geochemical conditions such as pH/carbonates, redox potential, ionic strength, radionuclide concentration, kinds and amounts of minerals, and microbes. For the evaluation of distribution coefficients, the data from Sweden (SKB), Finland (Posiva), Switzerland (Nagra), and Japan (JAEA) were collected, analyzed, and the recommended distribution coefficients have been suggested.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Deep borehole drilling is essential not only to select the host rock type for deep geological disposal of high-level radioactive waste (HLW), but also to identify the characteristics of the disposal site during the site selection process. In particular, since the disposal depth of HLW is considered to be over 300 m, deep borehole drilling must be performed. In deep borehole drilling, drilling design, excavation, and operation may vary depending on the rock type, drilling depth, and drilling purpose etc. This study introduced cases in which Korea was divided into four geotectonic structures and four representative rock types and conducted with a goal of 750 m drilling depth. Prior to this, a review of deep drilling cases conducted at domestic and abroad was presented. If sufficient time and cost are available, several drilling holes can be excavated for various purposes, but if not, one or two drilling holes should be used to achieve the objectives of various fields related to HLW disposal. The presence of bedding, strata or fault zones depending on the type of rock, etc. may affect drilling deviation or circulating water management. In addition, unlike drilling in general geotechnical investigation drilling, the use of polymers or grouting agents is limited to determine hydraulic and geochemical characteristics. This report introduces the experience considered during the design and drilling process of deep drilling in granite, gneiss, sedimentary rock, volcanic rock, etc., and is expected to be used as basic data when carrying out future HLW projects.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Compacted bentonite buffer blocks placed in the engineered barrier system for high-level nuclear waste disposal can undergo swelling, intrusion into rock fractures, and erosion with saturation. Bentonite erosion and intrusion can lead to bentonite mass loss via groundwater flow and can ultimately compromise the overall integrity of the disposal system. To ensure the long-term safety of deep geological disposal, it is essential to assess the hydro-mechanical interactions between the bentonite buffer and surrounding rock. In this study, the impact of bentonite erosion and intrusion on the mechanical properties of the jointed rock mass were assessed via elastic wave propagation measurements using the quasi-static resonant column test. Granite rock discs obtained from the Korea Underground Research Tunnel and Gyeongju bentonite were used to simulate jointed rock specimens with different bentonite intrusion conditions. Different degrees of bentonite intrusion were simulated by mixing bentonite and water to create bentonite paste and gel. The longitudinal and shear wave velocities under different normal stress levels were used to quantify the effects of bentonite intrusion on the mechanical characteristics of the rock joint. Complementary numerical analysis using the three-dimensional distinct element code (3DEC) was conducted to provide improved understanding of wave propagation within bentonite gouge-filled rock mass.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Discontinuities exert great influence on the thermal, hydraulic, and mechanical behavior of rock mass. Rock joint is one of the most frequently encountered discontinuities in many engineering applications, such as tunnel, rock slope and repository for high level radioactive waste. Therefore, the effects of rock joint should be thoroughly investigated in various aspects. Rock joint has gone through many geological processes and its behavior can be characterized by many properties. Among them, geometric properties, such as joint roughness, aperture, and contact area can affect mechanical and hydraulic properties and vice versa. Therefore, accurate understanding and characterization of the geometric properties are of importance. Generally, the geometric properties of a joint are obtained or estimated using the surface height or elevation, which could be measured by various contact or noncontact methods. Then, the coordinates of the surfaces are used to calculate several parameters, for instance roughness indexes and mechanical aperture, in a quantitative manner. This paper is a part of SKB task force project that aims to evaluate the geometric properties of rock joints and to analyze the hydromechanical behavior within a rough joint considering the properties. Four pairs of joint surfaces were laser-scanned in order to obtain coordinates of the surfaces and then the coordinates were used to calculate the roughness, directional roughness, aperture, and spatial correlations. At the same time, fluid flow within a rough joint were simulated by a commercial FEM code, considering the variation of aperture space due to normal load. Flowrate, flow path, and channelization were investigated in an aperture scale. Since rock mass consists of several joints and/or joint sets, characterization of a single rock joint can be utilized for analyzing the behavior of rock mass as a reference.
        8.
        2023.05 구독 인증기관·개인회원 무료
        With the increasing demand for a repository to safely dispose of high-level radioactive waste (HLW), it is imperative to conduct a safety assessment for HLW disposal facilities for ensuring the permanent isolation of radionuclides. For this purpose, the Korea Atomic Energy Research Institute (KAERI) is currently developing the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro). A far-field module, which specifically focuses on fluid flow and radionuclide transport in the host rock, is one of several modules comprising APro. In Korea, crystalline rock is considered the host rock for deep geological disposal facilities due to its high thermal conductivity and extremely low permeability. However, the presence of complex fracture system in crystalline rock poses a significant challenge for managing fluid flow and nuclide transport. To address this challenge, KAERI is participating in DECOVALEX-2023 Task F1, which seeks to compare and verify modeling results using various levels of performance assessment models developed by each country for reference disposal systems. Through the benchmark problems suggested by DECOVALEX-2023 Task F1, KAERI adopts the Discrete Fracture-Matrix (DFM) as the primary fracture modeling approach. In this study, the transport processes of reactive tracers in fractured rock, modeled with DFM, are simulated. Specifically, three different tracers (conservative, decaying, adsorbing) are introduced through the fracture under identical injecting conditions. Thereafter, the breakthrough curves of each tracer are compared to observe the impact of reactive tracers on nuclide transport. The results of this study will contribute to a better understanding of nuclide behavior in subsurface fractured rock under various conditions.
        9.
        2023.05 구독 인증기관·개인회원 무료
        In KAERI, a site descriptive model for stress field estimation had already been constructed by using integrated field data within KURT site scale. A sub-divided rock block domain containing major fracture zones has spatial rock mass and fault properties. The properties were decided based on the rock classification results of several borehole investigations. Modeling for maximum and minimum horizontal stress field estimation was performed and compared with the in-situ data. As a result, a depth-dependent stress ratio was adopted to obtain numerical results closer to actual in-situ data. Although the results were suitable at a relatively low depth (~500 m), there is still some deviation trend at a deep depth. This study aims to improve these modeling results by incorporating not only depth-dependent stress ratio but also changes in rock mass properties along the depth. The deep borehole of DB2 in the KURT site indicated fracture distribution corresponding to the property changes. Natural fractures are typically randomly oriented, and the fracture frequency decreases with increasing depth. The increase in P-wave velocity log data accompanies these features. A discrete fracture network (DFN) model can be used to simulate fractured rock explicitly, but DFN modeling is not feasible for site scale analysis because of its numerical efficiency. Therefore, as a preliminary model in this study, the effect of fracture distribution was considered by substituting the influence for the depth-dependent property. The properties were estimated from the fracture frequency and P-wave velocity log data. The influence of elastic modulus and density on the site stress field was dominant, with decreasing the deviation trend between modeling and in-situ data at a deep depth. Considering that the depth of the repository construction is within about 500 m, it may not be necessary to consider the change of rock properties with depth. However, it was determined that the rock property effect might need to be considered when the loading conditions change due to subsidence in the long-term evolution scenario. Continuously, this site descriptive modeling will be interdependently conducted with a representative DFN block model for deriving equivalent properties in fractured rock.
        10.
        2023.05 구독 인증기관·개인회원 무료
        The acoustic emission (AE) method as a passive non-destructive monitoring technique is proposed for real-time monitoring of mechanical degradation in underground structures, such as deep geological disposal of high-level nuclear waste (HLW). This study investigates the low-frequency characteristics of AE signals emitted during the fracturing of meter-scale concrete specimens; uniaxial compression tests (UCT) in a lab scale and Goodman jack (GJ) tests in a 1.3 m-long concrete block were conducted while acquiring the AE signals using low-frequency AE sensors. The results indicate a sharp increase in AE energy emission at approximately 60% and 80% of the yield stresses in the UCT and GJ tests, respectively. The collected AE signals were primarily found in two frequency bands: the 4-28 kHz range and the 56-80 kHz range. High-frequency AE signals were captured more as the stress increased in the GJ tests, which was in contrast to the UCT tests. Furthermore, the AE signals obtained from the Goodman jack tests tended to lower RA values than the UCT results. This study presents unique experimental data with low-frequency AE sensors under different loading conditions, which provides insights into field-scale AE monitoring practices.
        11.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGHFLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young’s modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young’s modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.
        5,400원
        12.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 지구과학 교사들이 변성암을 분류하기 위해 사용하는 개념 구조와 변성암을 분류하는 기준에 대해 알아보는 것이다. 이를 위해 연구자들은 전라북도 소재의 중학교와 고등학교의 지구과학교사 21명을 대상으로 사 고 구술을 활용하여 변성암을 분류하는 과정에서 진술한 언어 자료를 수집하였다. 그리고 이렇게 수집된 언어 자료를 언어네트워크분석법을 활용하여 분석하였고, 그 결과는 다음과 같다. 첫째, 지구과학 교사들은 변성암을 분류하는 과정 에서 암석에서 일반적으로 관찰할 수 있는 색, 구성 광물, 입자의 크기 등의 특징과 변성암에서 나타나는 엽리를 중심 으로 분류하였다. 둘째, 지구과학 교사들은 변성암의 분류 기준에 관해 접촉 변성작용과 광역 변성작용 등 변성작용을 중심으로 인식하고 있었다. 그러나 관찰한 내용을 잘못 판단하여 다른 암석으로 오인하는 사례들이 나타났다. 그러므로 지구과학 교사들이 변성암이 형성되는 과학적 과정과 변성암에서 관찰되는 현상을 서로 연결하여 인식할 수 있도록 그 들에게 변성암에 대한 관찰 정보와 경험을 충분히 제공할 필요가 있다.
        4,800원
        13.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.
        4,000원
        14.
        2022.10 구독 인증기관·개인회원 무료
        Engineered barriers (concrete and grout) in Low- and Intermediate-Level Waste (L/ILW) disposal facilities tend to degrade by groundwater or rainfall water over a long period of time. During the degradation process, radionuclides stored in the disposal facility might be released into the pore water, which can pass through the natural rock barriers (granite and sedimentary rock) and may reach the near-field and far-field. In this transportation, radionuclide might be sorbed onto the engineered and natural rock barriers. In addition, the organic complexing agent such as ethylenediaminetetraacetic acid (EDTA) and α-isosaccharinic acid (ISA), is also present in pore water, which may affect the sorption and mobility of radionuclide. In this study, the sorption and mobility of 90Sr under different conditions such as two pHs (7 and 13), different initial concentrations of organic complexing agents (from 10-5 M to 10-2 M), and solutions (groundwater, pore water, and rainfall water) were investigated in a batch system. The groundwater was collected at the L/ILW disposal facility located at Gyeongju in South Korea. The pore water and rainfall water were artificially made in the laboratory. The concrete, grout, granite, and sedimentary rock samples were collected from the same study sites from where the groundwater was collected. The rock samples were crushed to 53-150 micrometers and were characterized by XRD, XRF, SEM-EDS, BET, and zeta potential analyzer. 90Sr concentration was determined using liquid scintillation counting. The sorption of 90Sr was described by distribution coefficients (Kd) and sorption reduction factor (SRF). In the case of EDTA, the Kd values of 90Sr remained constant from 10-5 M to 10-3 M and tended to decrease at 10-2 M, while in case of ISA the Kd values decreased steadily as the concentration of ISA was increased from 10-5 M to 10-3 M; However, a sudden reduction in the Kd values were observed above 10-2 M. In comparison to EDTA, ISA gave a higher SRF of 90Sr. Therefore, from the above results, it can be concluded that the presence of ISA has a greater effect on the sorption and mobility of radionuclide in the solutions than EDTA, and the radionuclide may reach near- and far-field of the L/ILW disposal facility.
        15.
        2022.10 구독 인증기관·개인회원 무료
        Radionuclides can be leached into groundwater or soil over a long period of time due to unexpected situations even after being permanently disposed of in a repository. Therefore, it is necessary to investigate the mobility of radionuclides for the safety assessment of radioactive waste disposal. In this study, the effects of organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) on the sorption behavior of 239Pu and 99Tc over cementitious (concrete and grout) and natural rock samples (granite and sedimentary rock) were investigated in batch sorption experiments. For characterization of rock samples, XRD, XRF, FT-IR, FE-SEM, BET, and Zeta-potential analyses were performed. For the evaluation of mobility, the distribution coefficient (Kd) was selected and compared. The adsorption experiment was carried out at two pHs (7 and 13), a temperature of 20°C, and a range of organic complexing agents concentrations (10-7~10-2 M and 10- 5~10-2 M for 239Pu and 99Tc, respectively). The radionuclides concentrations in adsorption samples were analyzed using ICP-MS. The Kd values for 239Pu in all rock samples reduced significantly due to the presence of EDTA, even at low concentrations such as 10-5 M. In the case of ISA, the limiting noeffect concentration was much higher than that of EDTA. On the other hand, 99Tc showed relatively lower Kd values than 239Pu, and the sorption behavior of 99Tc was almost unaffected by the organic complexing agents for all rock samples. Therefore, it is possible to assume that the increased mobility of radionuclides, especially, 239Pu, in groundwater caused by the lowering of sorption at even low concentrations of organic complexing agents may result in the transport of radionuclides to the nearand far-field location of the repository.
        16.
        2022.10 구독 인증기관·개인회원 무료
        When the radioactive nuclides are leaked from a deep geological repository by groundwater, the migration path of the nuclides is mostly consisted of rock fractures to the surface biosphere. Thus, assessing the safety of the disposed radioactive wastes depends upon understanding of nuclide migration in the fractured rocks. Fractures in rocks tend to dominate the hydrological characteristics of the dissolved nuclides. To study migration of nuclides in the rock fracture, a granite block of 1 m scale was quarried from the Hwangdeung site. The block has a single natural fracture. The six faces of the rock including fracture gaps were sealed with silicone adhesives to prevent leaking or diffusion of the water. Usually flow in fractured rock is unevenly distributed and most of the water flow occures over a small portion of the fracture zone, that is so called channeling flow. It is caused by uneven distribution of apertures in a fracture field. Flow rate is proportional to the cubic of the aperture. Thus, figuring out aperture distribution in a fracture field is the most important step on the study of the migration of nuclides in the fractured region. The ideal way to figure out the aperture distribution in a fractured rock is to use a non-destructive tool such as X-ray tomagraphe. However, it has a limitation of scale, that is, less than about 30 cm. It is not easy to give a good resolution for this quarried rock of 100×60×60 cm scale. It gives complex and vague images of the fracture. The optimum way to get an aperture distribution in a fractured rock is to drill some boreholes to the fracture and to carry out hydraulic tests. The more number of boreholes gives the more accurate information, but the more disturbance to the fracture field. Thus, it is necessary to optimize between aperture information and disturbing fracture field by selecting a suitable number of boreholes. We drilled nine boreholes from the upper surface of the rock mass just to the fracture without penetrating the fracture. And we carried out dipole tests for the matrix set of 9 boreholes. From each dipole test, an effective average aperture was calculated with the data of flow rate and hydraulic head. Then aperture distribution in the fracture field is calculated with a modified Krigging method. As a result, the aperture is distributed in the range of about 0.03~0.16 mm.
        17.
        2022.10 구독 인증기관·개인회원 무료
        A rock joint exerts significant influences on the rock mass behavior in terms of thermal, hydraulic, and mechanical (THM) aspects. Therefore, its features should be thoroughly investigated in various rock mechanical projects, such as high-level radioactive waste (HLW) disposal repository, tunnel, and rock slope. Meanwhile, it is essential to guarantee the safety of the disposal repository for a very long period of time and it should prepare measures for various risks, which may possibly encounter during that period. In general, direct shear tests for a rock joint are conducted to investigate the possibility of frictional sliding of the joint under specific loading conditions or to predict the shear strength of the joint. However, it is necessary to consider whether regional sliding of a rock joint or reactivation of a fault might occur due to an earthquake or redistribution of the in-situ stresses because the expected operation period of the repository is quite long, and various situations can happen. A slide-hold-slide test for a rock joint is a practical test that can investigate the time-dependent behavior or frictionalhealing of a joint. The test enables an estimation of the stress build-up phenomenon after strain energy release in a quantitative manner. In this study, a series of slide-hold-slide tests were carried out in order to investigate the characteristics. Joint specimens were made from mortar, which is a rock-like and brittle material, so as to consider the effect of joint roughness and to secure the reproducibility of the tests. At the same time, mechanical conditions as well as thermal and hydraulic were applied in order to take the environment of the repository into account. As a result, the behavior of shear stress recovery was observed, and the effects of THM coupled condition on the recovery were investigated. This study presents fundamental results of the experiments, and further research outcomes, including time dependent behavior of a joint, will be presented sequentially.
        18.
        2022.10 구독 인증기관·개인회원 무료
        When a rapid groundwater inflow is introduced from the adjacent rock mass in the early stage of disposal, hydraulic pressure build-up occurs, which may cause piping erosion at the buffer material itself and the interface of the gap-filling material. Such piping erosion in compacted bentonite buffer via interaction between the buffer and the adjacent rock mass may deteriorate the performance of the buffer material. Therefore, it is necessary to understand the conditions and scenarios in which the piping phenomenon around the buffer material occurs for the long-term health of the repository. In this study, laboratory-scale experimental tests of piping erosion in buffer and interfacial rock was introduced. ø 100 mm × 200 mm height compacted bentonite specimens were placed in a cylindrical acetal cell, and the distilled water was continuously injected at a flow rate of 0.068 L/min using a dual syringe pump. The inflow of water was generated from the bottom and side cell of buffer material. During water injection, injected water pressure and amount were measured with visual observation. The results showed that the external saturation of buffer firstly occurs followed by piping crack generation along the wetting front. The additional piping channels were generated and merged with others. As the injection stopped, the swelling and self-sealing behavior of buffer material were observed. Moreover, X-ray CT scanning of the cell was conducted after the piping simulation to analyze the piping channels and saturation depth. The results highlight the piping erosion phenomenon mainly occurs due to the presence of a gap outside the buffer material. Further experimental cases is need to comprehensively understand piping phenomena in buffer material for assessing the long-term stability of underground radioactive waste disposal systems.
        19.
        2022.10 구독 인증기관·개인회원 무료
        In high-level radioactive waste disposal, a high temperature is generated from the canister containing the waste in the engineered barrier, while groundwater flows into the buffer system from the host rock. The temperature increase and groundwater inflow result in the water phase change and saturation variation. Saturation change is related to the thermal conductivity of buffer material; hence the phase change and saturation strongly interact with the temperature evolution. The complex coupled behavior affects the stability of the whole disposal system, and the security of the repository is critical to human-being life. However, it is difficult to predict the long-term coupled behavior in the disposal system due to the considerable field-test scale, and therefore a numerical simulation is a suitable method having repeatability and cost-effectiveness. DECOVALEX is an international cooperating project for developing numerical methods and models for thermo-hydro-mechanical-chemical (THMC) interaction. DECOVALEX has a four-year cycle with various topics. At the current phase, Task C aims to simulate the full-scale emplacement (FE) experiment performed at Mont Terri underground rock laboratory. Nine research groups are participating in the task, and among them, KAERI simulates the experiment using OGS-FLAC. The simulator combines OpenGeoSys for TH simulation and FLAC3D for M simulation. Through the benchmark simulation, we verified OGS-FLAC for the two-phase flow analysis in the disposal system and finally modeled the FE experiment with a three-dimensional grid. We performed a simple sensitivity analysis to investigate the effect of input parameters on the two-phase flow system and confirmed that the compressibility and permeability affected the flow behavior. We also compared the simulation results to the field data and obtained well-matched results from a series of simulation.
        20.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the amount of core stone breaking in the size of boulders by excavator braker work was analyzed quantitatively through on-site test construction. In addition, the factors affecting workload were studied. METHODS : In the field test, 30 core stones of boulder sizes (1–4 m3) that appeared during earthworks, such as road construction and site construction, were collected from three locations, and the rock breaking work was carried out simultaneously using three excavator breakers(1.0-m3 volume). During the core stone breaking, progress was analyzed through video recordings. RESULTS : After the completion of rock breaking, the amount of breaking work was analyzed by direct loading and weighing using a 15- ton dump truck. As a result of the test construction, there was a significant difference in the amount of work completed per hour. CONCLUSIONS : It was found that the results were greatly affected by not only the performance of the excavator braker equipment, but also the skill of the driver and the size of the core stones.
        4,000원
        1 2 3 4 5