This study investigated the behavior and environmental impact of expanded polystyrene (EPS) in a simulated marine environment, focusing on the effects of UV exposure. Through a series of controlled experiments, it was found that UV-induced weathering increased the formation of smaller EPS degradation products, leading to higher concentrations of dissolved organic carbon (DOC) in the seawater. Additionally, it was suggested that the assembly behavior of dissolved organic matter (DOM) contributed to the reduction of DOC levels over time. The EPS layer exhibited slightly higher DOC concentrations compared to the seawater, likely due to hydrophobic interactions that retained degradation products near the EPS. Analysis of the soil layer revealed that EPS particles and degradation products settled or adsorbed more extensively under UV conditions, indicating a greater risk of sediment contamination. Soil layer elution experiments further confirmed that EPS particles and their degradation products could migrate through soil pores, posing a potential contamination risk to other environments. UV exposure resulted in a twentyfold increase in DOC release from EPS compared to dark conditions. These findings highlight the persistent pollution potential of EPS in marine environments, especially under UV exposure, and emphasize the need for effective EPS waste management and further research into its environmental impacts.
비록 산화 그래핀의 비표면적은 환원된 산화 그래핀에 비해 낮지만, 산화 그래핀의 이산화탄소 흡착량은 기존 그 래핀 또는 환원된 산화 그래핀에 비해 많다. Lerf-Klinowski 모델에 따르면, 산화 그래핀은 가장 자리와 면 내부에 수산화기, 에폭시드, 카보닐, 카복실기 등이 있으며, 이러한 작용기가 이산화탄소 분자와 강하게 결합하여 화학 흡착을 유도한다. 본 연 구에서는 산소 플라즈마/UV 오존 및 열처리를 통해 그래핀 산화물의 산소 함량과 이산화탄소 흡착 친화도 사이의 상관관계 를 탐구하였다. 산소 함량의 변화는 XPS와 FT-IR 분석을 통해 확인하였다. 흥미롭게도 산화 그래핀의 이산화탄소 흡착 경향 은 전체 산소 함량과 정비례하지 않았다. 반면, XPS 분석 결과 산화 그래핀의 카보닐 작용기가 이산화탄소 흡착에 중요한 기 여를 하는 것으로 나타났다. 이러한 연구 결과는 산화 그래핀의 특성 및 이를 활용한 탄소 포집 및 가스 저장 응용 가능성에 대한 통찰을 제공한다.
Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10−7 -2.0×10−5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.
Heavy metal pollution has a harmful impact on human health and is regarded as a vital problem. Preparation of a novel, low cost bio-sorbent for heavy metal sorption is the main target of this research. Non-living Chlorella Vulgaris Alga/Date pit activated carbon composite (1:1), (CV/AC), is a novel bio-sorbent prepared by the wet-chemical method for sorption of Pb (II) and Sr (II) from aqueous media. The optimum pH for sorption reaction is 5 and the equilibrium time is achieved within 1 h. The sorption efficiencies are 90.5% for Pb(II) and 95.7% for Sr(II) with initial concentration Co 10 mg L– 1 at 298 K. The monolayer sorption capacities of CV/AC composite at 298 K and pH = 5 were 6.34 ± 0.059, 5.97 ± 0.22 mg g– 1. The saturation capacities were 98.5 and 125 mg g– 1 for Pb (II) and Sr (II), respectively after 10 days. The sorption process is a spontaneous and endothermic reaction. It follows a pseudo-2nd-order mechanism. The results are suggestive of the need to adopt CV/AC composite as a potential bio-sorbent of Pb (II) and Sr (II) for waste water treatment.
The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. N2 or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.
FASs (fluoroalkylsilanes)로 표면 개질한 소수성 막에 대한 부탄올/물, 이소프로판올/물 용액의 수착(sorption)량을 측정하였으며 이들 수착 특성을 Hansen 용해도 파라미터를 이용하여 해석하였다. 부탄올의 수착량이 이소프토판올보다 많았으며, 이는 부탄올의 용해도 파라미터(δt = 20.4)와 FASs 소수성 막의 용해도 파라미터(δt = 16.9)와의 차이가 이소프로판올 (δt = 24.6)과의 차이보다 작기 때문인 것으로 설명할 수 있다. 극성력(δp) 측면에서 살펴보면, FASs 극성력(δp = 4.6)과 부탄올의 극성력(δp = 6.3)과의 차이가 FASs 극성력(δp = 4.6)과 이소프로판올의 극성력(δp = 9.0)과의 차이보다 작다. 이는 부탄올-FASs 간의 극성력 차이가 이소프로판올-FASs 간의 극성력 차이보다 작아서 부탄올-FASs 간의 상호인력이 크다는 것 을 의미하며, 수착량이 크게 나타나는 결과를 설명할 수 있다. 본 실험결과로부터 막에 대한 알코올의 수착특성, 용매에 대한 용질의 용해도 등을 분석하는데 용해도 파라미터를 이용할 수 있음을 알 수 있다.
The understanding of water vapor sorption and equilibrium in food samples is crucial in the formulation of foods and in their storage stability. In this study, the moisture sorption isotherms of yacon powder was measured by using gravimetric method at 25℃, 35℃, and 45℃ under the relative humidity ranging from 11% to 75%, and nine different isotherm models were used to fit the experimental data and to analyze water vapor sorption on yacon powder. The experimental results showed that water vapor sorption for yacon powder followed a type III shape over the humidity range. The BET monolayer moisture contents values were slightly higher than the values predicted by the GAB model. The monolayer moisture content increased slightly as temperature increased. The surface areas for monolayer moisture sorption decreased with increasing temperature and blanching reduced these values. Through quantifying the relative percentage error (E), coefficient of determination (R2), standard error (SE), and root mean square (RMS) of the isotherm models relative to data, Halsey model was identified to be the best-fitting isotherm to describe the water sorption process in yacon powder.
The goal of this study was to determine moisture sorption isotherms of fermented sea tangle powder (FSTP) at 4 °C, 25 °C, and 37 °C by using the static gravimetric technique in a water activity (aw)rangeof0.11to0.93andtheyexhibittypeIII behavior, typical of food products. At constant aw, an equilibrium moisture content (EMC) decreased with increasing temperature. The EMC increased with increasing aw at constant temperature. These moisture sorption isotherms have been fitted using eight different mathematical models. The Guggenheim-Anderson-de Boer (GAB) model presents the best fit in describing equilibrium moisture content and water activity relationships for the FSTP over the entire range of temperatures. Isosteric heat of sorption (IHS) was determined from the equilibrium sorption data using the Clausius-Clapeyron equation. The IHS decreased from 61.68 to 48.70 kJ/mol with increasing the EMC from 0.14 to 3.22 g/g dry basis, approaching the latent heat of vaporization of pure water (, 45.71 kJ/mol). The obtained IHS indicating intermolecular attractive forces between the moisture vapor and sorption sites is an important factor to predict the drying and storage processes for the FSTP.
Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating (550°C, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, Mössbauer spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) (Qm= 25.6 mg g–1 at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by Mössbauer spectroscopy ([super] paramagnetic Fe2O3, α-Fe, non-stoichiometric Fe3C, γ-Fe2O3, γ-Fe) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves (Qm=144.9 mg g–1 at pH 10.9) compared to using conventional techniques.
Removal of phosphate from environmental water has become more important to prevent eutrophication. In the present study, sorption behavior of phosphate onto magnesite was investigated under different conditions. The optimum pH of phosphate adsorption was determined to be 6.0. The adsorption capacity was found to decrease with increasing temperature, which indicates that a low temperature was beneficial for phosphate adsorption. The sorption capacity for phosphate was found to be 10.2 mg/g at an initial concentration of 100 mg/L and a dose of 2 g/L. The first order kinetic equation and Freundlich isotherm model fit the data well. Phosphate adsorption on magnesite was explained by electrostatic attraction and weak physical interactions.
High pollutant-loading capacities (up to 319 times its own weight) are achieved by three-dimensional (3D) macroporous, slightly reduced graphene oxide (srGO) sorbents, which are prepared through ice-templating and consecutive thermal reduction. The reduction of the srGO is readily controlled by heating time under a mild condition (at 1 10–2 Torr and 200°C). The saturated sorption capacity of the hydrophilic srGO sorbent (thermally reduced for 1 h) could not be improved further even though the samples were reduced for 10 h to achieve the hydrophobic surface. The large meso- and macroporosity of the srGO sorbent, which is achieved by removing the residual water and the hydroxyl groups, is crucial for achieving the enhanced capacity. In particular, a systematic study on absorption parameters indicates that the open porosity of the 3D srGO sorbents significantly contributes to the physical loading of oils and organic solvents on the hydrophilic surface. Therefore, this study provides insight into the absorption behavior of highly macroporous graphene-based macrostructures and hence paves the way to development of promising next-generation sorbents for removal of oils and organic solvent pollutants.
Excess phosphorus in water has become a crucial aspect concerning the eutrophication. Experiments were carried out to fabricate particles of iron oxide to polymer and the beads were then calcinated. It was found that adsorption process most satisfactory fitted to Langmuir equation (R2>0.92) with maximum adsorption capacity 2.663 mg P/g adsorbent. Equilibrium of adsorption was reached after 3 h, while the initial adsorption rate increased from 0.46 mg/g-h to 3.83 mg/g-h when the bead iron content increased from 40.4 mg Fe/g to 160 mg Fe/g. This research was supported by a project (No. 2013001390002) from the Korea Environmental Industry & Technology Institute funded by the Ministry of Environment and the Brain Korea 21 Plus program of the Korean government.
According to a recent government study, development and distribution of functional building materials are increasing in Korea. In this study, we evaluated reduction performance of formaldehyde and toluene by sorptive building materials using small-scale chamber(20L) test method for 7 days. According to the results of this study, 18 building materials showed that the effects of formaldehyde reduction among the 23 building materials. And the number of the building materials with respect to its ability to reduce the concentration of toluene was relatively small. The mean sorption rate and total amount of sorption for formaldehyde were 36.8% and 1,525.4㎍/㎡, respectively. The sorption rate and total amount of sorption for formaldehyde were in the range 1.5∼78.4% and 87.5∼3,086.0㎍/㎡, respectively. And the mean sorption rate and total amount of sorption for toluene were 11.6% and 1,054.4㎍/㎡, respectively. The sorption rate and total amount of sorption of toluene were in the range 0.1∼62.4% and 29.6∼6,764.0㎍/㎡, respectively. In most cases, the performance of the building materials with respect to its ability to reduce the concentration of pollutants has steadily decreased within 7 days.
Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The texturalparameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77K. The chemistryof the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygengroups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303K. Two processeswere investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at variousinitial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the protoncompetition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiencyand to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factorin determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.