The purpose of this study was that the optimal hydrolysis conditions of endo- and exo-type enzymes were selected to utilize organic cheese byproducts. Optimal substrate concentration and optimum enzyme ratio were measured by using 4 kinds of endo-type enzymes (alcalase, neutrase, protamex, and foodpro alkaline protease) and two exo-type enzymes (flavourzyme and prozyme 2000P) for whey protein hydrolysis were analyzed using liquid chromatography. As a result, the optimal endo-type enzyme through the first enzyme reaction was selected as alcalse, and as a result of the secondary enzyme reaction, flavourzme was selected as the Exo type enzyme. The concentration of whey protein substrate for optimal primary and secondary enzyme reactions was 10%. In addition, the optimum ratio of enzyme was 0.5% of alcalase and 0.2% of flavourzyme, which showed low molecular weight chromatography pattern compared to 2% of alcalase and 1% of flavourzyme hydrolyzate. Therefore, hydrolyzing the endo-type enzyme alcalase at a concentration of 0.5% for 10 hours and then hydrolyzing the exo-type enzyme flavouryme at a concentration of 0.2% for 4 hours was considered to be the optimum condition.
The effects of substituting whey protein concentrate (WPC) powder for rice flour in the preparation of seolgiddeok were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufactureing process. Whey protein is known as a good nutritional source and is a functional material for many processed foods. WPC contains more than 80% whey protein. The moisture content decreased gradually during storage and the decrease in moisture was less in the control than in the WPC powder substituted groups. The color lightness (L) decreased significantly as the amount of WPC powder increased, wherease redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess and adhesiveness of seolgiddeok tended to increase in proportion to the amount of WPC powder in the formula. Seolgiddeok gelatinization was investigated by amylographing. Initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown were low in seolgiddeok prepared with WPC powder substituted for rice flour. Setback had the lowest value in the control. Sensory evaluations revealed that, seolgiddeok prepared with 3% WPC powder had the highest overall acceptability score. These results indicated that WPC seolgiddeok with 3% WPC powder has the best quality.
본 연구에서는 농축유청단백질을 이용하여 내부젤화 방법으로 나노크기(<~200 nm)의 W1/O/W2 다중 에멀젼을 제조하고, 제조 공정요인(가교제인 CaCl2 농도, 초음파처리, 유화제)에 따른 나노다중에멀젼의 형태학적, 물리화학적(입자크기, 다분산지수, 제타전위) 특성 평가와 모델 유식품(우유, 요구르트, 치즈)을 이용한 저장 안정성을 연구하였다. 나노다중에멀젼의 형태학적 특성은 투과전자현미경을 이용하여 관찰하였으며 물리화학적 특성 및 유식품 저장 안정성 평가는 입도분석기를 이용하여 수행되었다. 실험 결과 가교제인 CaCl2을 첨가함에 따라 다중에멀젼의 크기가 유의적으로(p<0.05) 감소하였으며, 이용된 CaCl2 모든 농도(0, 4, 6, 8 mM)에서 음전하를 지닌 다중에멀젼은 다분산지수 0.2 이하의 균질의 입자 분포를 지니고 있음을 알 수 있었다. 또한 투과전자현미경을 이용하여 관찰한 결과, ~ 180 nm 크기의 내부에 오일상이 포함된 구형의 나노다중에멀젼이 성공적으로 제조되었음을 확인하였다. 초음파 처리시 다중에멀젼 크기는 유의적으로(p<0.05) 감소하였으며, 다분산지수 0.2 이하의 나노다중에멀젼이 생성됨을 확인하였다. 또한 수상 내 유화제 첨가 시 입자크기가 유의적으로(p<0.05) 감소하였고, 다분산지수 0.2 이하의 나노다중에멀젼이 생성됨을 확인하였다. 모델 유식품 저장 환경에서의 안정성 평가 결과 14일 동안 나노다중에멀젼은 물리화학적 안정성을 유지하였으며, 결과적으로 농축유청단백질 나노다중에멀젼은 유식품 적용성이 뛰어남을 확인하였다.
The effects of substituting whey protein isolate (WPI) powder for rice flour during the preparation of paeksulgi (Korean rice cake) were evaluated by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufacturing process. Whey protein is known as a good nutritional source and a functional material for many processed foods. WPI contains more than 90% whey protein. The moisture content decreased gradually during storage and the decrease was less in control than WPI powder-substituted groups. The color lightness (L) decreased significantly with increasing WPI powder, wherease the redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess, adhesiveness and fracturability of paeksulgitended to increase in proportion to the amount of WPI powder added. Evaluation of the gelatinization of paeksulgi by amylographing revealed that the initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown was lower in samples that contained WPI powder. However, the lowest setback value was observed in the control. The results of the sensory evaluation indicated that paeksulgi prepared with 2% WPI powder had the highest overall acceptability. Taken together, these results suggest that WPI paeksulgi containing 2% WPI powder has the best quality.
In this study, physicochemical properties and the antioxidative activity of whey protein isolate(WPI) for com germ oil were measured. The pH of WPI was 6.26, and the titrable acidity was 0.18%. The WPI’s moisture content was 5.2% and each of the other element content such as lactose, crude protein, crude ash and crude fat was found to be 0.8%, 90.7%, 2.7% and 0.6%, respectively. The amounts of active SH group in WPI 9 μ M-g and total colony counts of bacteria was 5.9 × 103 CFU-g. α-Lactalbumin, β-lactoglobulin and bovine serum albumin(BSA) were shown in WPI as major protein by electrophoresis. The antioxidative effect of WPI and other antioxidants on com germ oil used as substrate was determined by peroxide value(POV) and conjuqated dienoic acid value(CDV). By these results, the order of antioxidative effects could be defined as BHT 0.02%〉ascorbic acid 0.1%〉WPI 0.1%〉WPI 0.02%〉ascorbic acid 0.02%〉control〉tocopherol 0.02%〉tocopherol 0.1%, respectively. Also the induction period of com germ oil added with WPI was longer by 1.6 times than that of control(none added any antioxidant). Therefore the fact suggested that WPI could be utilized as a good antioxidative agents.