검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,199

        2241.
        2023.11 서비스 종료(열람 제한)
        Most of the C-14 produced is in the organic form, generated as methane (14CH4), methanol (14CH3OH), formaldehyde (14CH2O), and formic acid (14CO2H2). When analyzing C-14, it is transformed into the form of 14CO2, and its concentration is determined using LSC. Typical examples include the wet oxidation method, the combustion or Pyrolysis. The wet oxidation method uses strong acids and involves repeated operations, which generates large amounts of acid waste and secondary radioactive waste. The combustion method uses high temperatures, which requires an oxygen device. Pyrolysis also requires high temperature in a vacuum and catalysts. Catalysts are expensive because they are platinum-based. To compensate for these shortcomings, a C-14 analysis method using UV irradiation was developed. In this study, 100 mL of distilled water mixed with formic acid (CO2H2), potassium persulfate (K2S2O8), and silver nitrate (AgNO3) was irradiated with a 320-390 nm UV lamp to conduct a CO2 production reaction experiment. The UV range was measured using a photometer (UV Power puck II). The beaker was made of quartz in 150 mL size with three inlets : a temperature measurement, a sample inlet, and a collection tube connector. We changed the UV lamp used from a 450 W halogen lamp to a 100 W LED, which has a lower temperature and is safer. As a result of the experiment, CO2 bubbles were generated in the collection tube, due to the UV irradiation react, which uses oxidizer and catalysts. The maximum temperature of the solution irradiated with the LED UV lamp was less than 56°C. It confirmed the rate of bubble generation changed depending on the lamp distance, the amount of sample, oxidizer, and catalyst. In an experiment to confirm the reaction caused by heat, it was found that although a reaction occurred due to heat, the reaction was significantly lower than when using a UV lamp. The reproducibility experiment was conducted three times in total under the same conditions. It showed the same pattern. In the future, we plan to select mock samples, collect 14CO2 in Carbo- Sorb, and analyze them using LSC. The results of this research will be used as a technology to recover C-14 more safely and efficiently and will also be used to expand its application to the treatment of other wastes such as waste liquid and waste resin through simulated samples.
        2242.
        2023.11 서비스 종료(열람 제한)
        Chelating agents, such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA) are widely used in industry and agriculture as water softeners, detergents, and metal chelating agents. In wastewater treatment plants, a significant amount of chelating agents can be discharged into natural waters because they are difficult to degrade. Since those compounds affect the mobility of radionuclides or heavy metals in decontamination operations at nuclear facilities and radioactive waste disposal, quantification of the amount of ligand is very important for safe nuclear waste management. To predict the behavior of the main complexation in sample matrices of radioactive wastes, it is essential to evaluate the distribution of the metal-chelating species and their stabilities in order to develop analytical techniques for quantifying chelating agents. We have investigated to collect information on the pH speciation of metal chelation and the stability constants of metal complexes depending on three chelating agents (EDTA, DTPA, and NTA). For example, Zhang’s group recently reported that the initial coordination pH of Cu(II) and EDTA4− is delayed with the addition of Fe(III), and the pH range for the stable existence of [Cu(EDTA)]2− is narrowed compared to when it is alone in the sample matrix. The addition of Fe(III) clearly impacts the chemical states of the Cu(II)-EDTA solution. Additionally, Eivazihollagh’s group demonstrated differences in the speciation and stability of Cu(II) species between Cu(II) and three chelating ligands (EDTA, DTPA, and NTA). This study will be greatly helpful in identifying the sample matrix for binding major chelating agents and metals as well as developing chemically sample pretreatment and separation methods based on the sample matrix. Finally, these advancements will enable reliable quantitative analysis of chelating agents in decommissioning radioactive wastes.
        2243.
        2023.11 서비스 종료(열람 제한)
        In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, 􀟙-FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
        2244.
        2023.11 서비스 종료(열람 제한)
        This study aimed to provide better understanding of the bedrock aquifer bacterial communities and their functions in deep geological repository (DGR) environment. Two study sites of uranium deposits in the Ogcheon Metamorphic Belt were selected: Boeun and Guemsan. From two study sites, six groundwater samples were obtained with different boreholes and depths: OB1 (Boeun, 25 m), OB3 (Boeun, 80 m), GS1 (Guemsan, 25 m), GS2 (Guemsan, 85-90 m), GS3-I (Guemsan, 32- 38 m), GS3-II (Guemsan, 70-74 m). The physicochemical properties of groundwater were analyzed by multi-parameter sensors, ion chromatography (IC), and inductively coupled plasma optical emission spectroscopy (ICP-OES). Illumina Miseq sequencing was performed to investigate bacterial community in six groundwater samples. In addition, the number of sulfate-reducing bacteria (SRB) was quantified by a quantitative PCR (qPCR). Bacterial community composition varied in response to boreholes and depths. A total of 14 different phyla and 36 classes were detected from six groundwater samples. Overall, Proteobacteria, Actinomycetota, and Bacteroidota were dominant in the phylum level. SRB and iron-reducing bacteria (IRB) were detected in all groundwater samples even though organic carbon sources were not abundant (0.7-3.3 mg-total organic carbon/L). This result shows a potential to immobilize uranium in DGR environment. In particular, SRB, Desulfosporosinus fructosivorans and Humidesulfovibrio mexicanus were mainly detected in GS1 and GS2 groundwater samples, which attributed to higher dissimilatory sulfite reductase functional gene copy number in GS1 and GS2 groundwater samples. Statistical analysis was performed to understand the correlation between environmental factors and core bacterial species. Dissolved oxygen (DO), Fe, and Mn concentrations were positively correlated with Curvibacter fontanus while Undibacterium rivi had a negative correlation with pH. These results indicate that bacterial community could be changed in response to environmental variation. Further study with a greater number of samples is necessary to obtain statistically reliable and meaningful results for a safe DGR system.
        2245.
        2023.11 서비스 종료(열람 제한)
        Buffer materials are one of the engineering barrier components in high-level radioactive waste disposal facilities. Compacted bentonite has been known as the most suitable buffer material so far, and research is being conducted worldwide to determine the characteristics of suitable bentonite blocks in each country. Therefore, this study aims to compare and analyze various properties of different buffer material candidates, including thermal, hydraulic, and mechanical properties. Buffer material candidates for Korea disposal system, Kyungju Bentonite (KJ-I, KJ-II), and Bentonil- WRK were compared. The properties were compared and analyzed based on experimental and literature data. The data obtained from this report can be used to understand the behavior of buffer materials and assess whether they meet various criteria, such as temperature and saturation, and ultimately serve as an essential input variable database for safety evaluations of disposal systems.
        2246.
        2023.11 서비스 종료(열람 제한)
        The HADES (High-level rAdiowaste Disposal Evaluation Simulator) was developed by the Nuclear Fuel Cycle & Nonproliferation (NFC) laboratory at Seoul National University (SNU), based on the MOOSE Framework developed by the Idaho National Laboratory (INL). As an application of the MOOSE Framework, the HADES incorporates not only basic MOOSE functions, such as multi-physics analysis using Finite Element Method (FEM) and various solvers, but also additional functions for estimating the performance assessment of Deep Geological Repositories (DGR). However, since the MOOSE Framework does not have complex mesh generation and data analyzing capabilities, the HADES has been developed to incorporate these missing functions. In this study, although the Gmsh, finite element mesh generation software, and Paraview, finite element analysis software, were used, other applications can be utilized as well. The objectives of HADES are as follows: (i) assessment of the performance of a Spent Nuclear Fuel (SNF) disposal system concerning Thermal-Hydraulic-Mechanical-Chemical (THMC) aspects; (ii) Evaluation of the integrity of the Engineered Barrier System (EBS) of both general and high-efficiency design perspective; (iii) Collaboration with other researchers to evaluate the disposal system using an open-source approach. To achieve these objectives, performance assessments of the various disposal systems and BMTs (BenchMark Test), conducted as part of the DECOVALEX projects, were studied regarding TH behavior. Additionally, integrity assessments of various DGR systems based on thermal criteria were carried out. According to the results, HADES showed very reasonable results, such as evolutions and distributions of temperature and degree of saturation, when compared to validated code such as TOUGH-FLAC, ROCMAS, and OGS (OpenGeoSys). The calculated data are within the range of estimated results from existed code. Furthermore, the first version of the code, which can estimate the TH behavior, has been prepared to share the contents using Git software, a free and open-source distribution system.
        2247.
        2023.11 서비스 종료(열람 제한)
        To address the pressing societal concern in Korea, characterized by the imminent saturation of spent nuclear fuel storage, this study was undertaken to validate the fundamental reprocessing process capable of substantially mitigating the accumulation of spent nuclear fuel. Reprocessing is divided into dry processing (pyro-processing) and wet reprocessing (PUREX). Within this context, the primary focus of this research is to elucidate the foundational principles of PUREX (Plutonium Uranium Redox Extraction). Specifically, the central objective is to elucidate the interaction between uranium (U) and plutonium (Pu) utilizing an organic phase consisting of tributyl phosphate (TBP) and dodecane. The objective was to comprehensively understand the role of HNO3 in the PUREX (Plutonium Uranium Redox Extraction) process by subjecting organic phases mixed with TBPdodecane to various HNO3 concentrations (0.1 M, 1.0 M, 5.0 M). Subsequently, the introduction of Strontium (Sr-85) and Europium (Eu-152) stock solutions was carried out to simulate the presence of fission products typically contented in the spent nuclear fuel. When the operation proceeds, the complex structure takes the following form. 􀜷􀜱􀬶 􀬶􀬾(􀜽􀝍) + 2􀜰􀜱􀬷 􀬿(􀜽􀝍) + 2􀜶􀜤􀜲(􀝋􀝎􀝃) ↔ 􀜷􀜱􀬶(􀜰􀜱􀬷)􀬶 ∙ 2􀜶􀜤􀜲(􀝋􀝎􀝃) Subsequently, separate samples were gathered from both the organic and aqueous phases for the quantification of gamma-rays and alpha particles. Alpha particle measurements were conducted utilizing the Liquid Scintillation Counter (LSC) system, while gamma-ray measurements were carried out using the High-Purity Germanium Detector (HPGe). The distribution ratio for U, Eu (Eu-152), and Sr (Sr-84) was ascertained by quantifying their activity through LSC and HPGe. Through the experiments conducted within this program, we have gained a comprehensive understanding of the selective solvent extraction of actinides. Specifically, uranium has been effectively separated from the aqueous phase into the organic phase using a combination of tributyl phosphate (TBP) and dodecane. Subsequently, samples containing U(VI), Eu(III), and Sr(II) underwent thorough analysis utilizing LSC and HPGe detectors. Our radiation measurements have firmly established that the concentration of nitric acid enhances the selective separation of uranium within the process.
        2248.
        2023.11 서비스 종료(열람 제한)
        International Atomic Energy Agency defines the term “Poison” as a substance used to reduce reactivity, by virtue of its high neutron absorption cross-section, in IAEA glossary. Poison material is generally used in the reactor core, but it is also used in dry storage systems to maintain the subcriticality of spent fuel. Most neutron poison materials for dry storage systems are boron-based materials such as Al-B Carbide Cermet (e.g., Boral®), Al-B Carbide MMC (e.g., METAMIC), Borated Stainless Steel, Borated Al alloy. These materials help maintain subcriticality as a part of the basket. U.S.NRC report NUREG-2214 provides a general assessment of aging mechanisms that may impair the ability of SSCs of dry storage systems to perform their safety functions during longterm storage periods. Boron depletion is an aging mechanism of neutron poison evaluated in that report. Although that report concludes that boron depletion is not considered to be a credible aging mechanism, the report says analysis of boron depletion is needed in original design bases for providing long-term safety of DSS. Therefore, this study aimed to simulate the composition change of neutron poison material in the KORAD-21 system during cooling time considering spent fuel that can be stored. The neutron source term of spent fuel was calculated by ORIGEN-ARP. Using that source term, neutron transport calculation for counting neutrons that reach neutron poison material was carried out by MCNP®-6.2. Then, the composition change of neutron poison material by neutron-induced reaction was simulated by FISPACT-II. The boron-10 concentration change of neutron poison material was analyzed at the end. This study is expected to be the preliminary study for the aging analysis of neutron poison material about boron depletion.
        2249.
        2023.11 서비스 종료(열람 제한)
        Safe management of spent nuclear fuel (SNF) is a key issue to determine sustainability of current light water reactor (LWR) fleet. However, none of the countries are actually conducting permanent disposal of SNFs yet. Instead, most countries are pursuing interim storage of spent nuclear fuels in dry cask storage system (DCSS). These dry casks are usually made of stainlesssteels for resistibility against cracking and corrosion, which can be occurred over a long-term storage period. Nevertheless, some corrosion called Chloride-Induced Stress Corrosion Cracking (CISCC) can arise in certain conditions, exacerbating the lifetime of dry casks. CISCC can occur if the three conditions are satisfied simultaneously: (i) residual tensile stress, (ii) material sensitization, and (iii) chloride-rich environment. A residual tensile stress is developed by the two processes. One is the bending process of stainless-steel plates into a cylindrical shape, and the other is the welding process, which can incur solidification-induced stress. These stresses provide a driving force of pit-to-crack transition. Around the fusion weld areas, chromium is precipitated at the grain boundary as a carbide form while it depletes chromium around it, leading to material susceptible to pitting corrosion. It is called sensitization. Finally, coastal regions, where nuclear power plants usually operate, tend to have a higher relative humidity and more chloride concentration compared to inland areas. This high humidity and chloride ion concentration initiate pitting corrosion on the surface of stainless-steels. To prevent initiation of CISCC, at least one of the three conditions should be removed. For this, several surface engineering techniques are under investigation. One of the most promising approaches is surface peening method, which is the process that impacts the surface of materials with media (e.g., small pins, balls, laser pulse). By this impact, plastic deformation on the surface occurs with compressive stress that counteracts with pre-existing residual tensile stress, so this approach can prevent pit-to-crack transition of stainless-steels. Also, cold spray deposition can prevent CISCC. Cold spray deposition is a method of spraying fine metal powder to a substrate by accelerating them to supersonic velocity with propellant gas. As a result, a thin coating composed of the feedstock powders can protect the substrate from outer corrosive environments. In addition, the impact of the feedstock powder on the substrate during the process provides compressive stress, similar to the peening method.
        2250.
        2023.05 서비스 종료(열람 제한)
        In this study, in relation to the demolition of the building as a research reactor, in order to establish a basic design for preparation for relocation and installation of the TRIGA Mark-II, the present conditions such as actual measurements and structural safety were investigated, as well as technologies and cases related to the relocation and installation of cultural properties. Based on this, the basic design for the relocation and installation of cultural assets was established by reviewing the disassembly and transport design of the TRIGA Mark-II and the basic plan for the relocation site. Although the structural safety of the current self-weight of the structure is judged to be reasonable, when lifting the structure, it is necessary to consider a method of lifting the foundation by reinforcing the foundation so that the tensile force can be minimized in the structure. As for the technology to be applied before TRIGA Mark-II, the technology before non-transplacement was confirmed as the most reasonable method in terms of preserving the original form, securing safety, and securing economic feasibility. Among the non-replacement technologies, the methods that can be applied before reactor 1 can be largely classified into three types. The three methods to be reviewed can be largely classified into the traditional rail movement method, the movement method using transport equipment, and the crane movement method. Each required period was calculated from the basic design results, and the modular trailer method was judged to be the most efficient. From the basic design results, the required period for each stage according to the mobile construction method was calculated. Depending on the calculation result, the modular trailer method is judged to be the most efficient. However, the final construction method should be selected according to the detailed design results. Overall, the results obtained through this study suggest that it is possible to create a memorial hall without the previous installation of TRIGA Mark-II if the structure foundation is composed independently of the building foundation after conducting a detailed characteristic investigation on the foundation of the TRIGA Mark-II structure.
        2251.
        2023.05 서비스 종료(열람 제한)
        Heat-generating nuclides such as Cs-137 and Sr-90 should be separated from spent nuclear fuel to reduce the short-term thermal load on the repository facility. In particular, Sr-90 must be separated because its decay process generates high temperatures. Recently, the Korea Atomic Energy Research Institute (KEARI) has been developing a waste burden minimization technology to reduce the environmental burden resulting from the disposal of spent nuclear fuel and maximize the utilization of the disposal facility. The technology incorporates a nuclide management process that maximizes disposal efficiency by selectively separating and accumulating key nuclides from spent nuclear fuel, such as Cs, Sr, I, TRU/RE, and Tc/Se. Sr nuclides dissolve in the chloride phase during the chlorination process of spent nuclear fuel and are recovered as carbonate or oxide through reactive distillation or reactive crystallization. Due to their chemical similarity, Ba nuclides are recovered along with Sr nuclides during this process. In this study, we prepared a ceramic waste form for group II nuclides, Ba(x)Sr(1-x)TiO3 (x=0, 0.25, 0.5, 0.75, 1), using the solid-state reaction method, taking into account the different ratios of Sr/Ba nuclides produced during the nuclide management process. Regardless of the Sr/Ba ratio, the established waste form fabrication process was able to produce a stable waste form. Physicochemical properties, including leaching and thermal properties, were evaluated to determine the stability of group II waste forms. In addition, the radiological properties of waste forms of Ba(x)Sr(1-x)TiO3 with varying Sr/Ba ratios were evaluated. These results provided fundamental data for the long-term storage and management of waste forms containing group II nuclides.
        2252.
        2023.05 서비스 종료(열람 제한)
        The US NRC developed a program called NRCDose3 to evaluates the environmental impact of radiation around nuclear facilities. The NRCDose3 code is a software suite that integrates the functionality of three individual LADTAP II, GASPAR II, and XOQDOQ Fortran codes that were developed by the NRC in the 1980’s and have been in use by the nuclear industry and the NRC staff for assessments of liquid effluent and gaseous effluent, and meteorological transport and dispersion, respectively. Through the integrated program, it is possible to conduct safety assessment and environmental impact assessment from liquid and gaseous effluent when operating permits are granted. In addition to a more user-friendly graphic user interface (GUI) for inputting data, significant changes have been made to the data management and operation to support expanded capabilities. The basic calculation methods of the LADTAP II, GASPAR II, and XOQDOQ have not been changed with this update to the NRCDose3 code. Several features have been added. The previous program used only ICRP-2 dose conversion factor, but the new program can additionally use dose conversion factor of ICRP-30 and ICRP-72. In the previous program, 4 age groups (infant, child, teen, and adult) were evaluated during dose evaluation, but when ICRP-72 was selected, 6 age groups (infant, 1-year, 5-year, 10-year, 15-year, and adult) could be evaluated. In addition, when selecting ICRP-72, many user-modifiable parameters such as food intake and exposure time were added. It will be referred to E-DOSE60, a program currently under development.
        2253.
        2023.05 서비스 종료(열람 제한)
        The ability to both assay the presence of, and to selectively remove ions in a solution is an important tool for waste water treatment in many industrial sectors, especially the nuclear industry. Nuclear waste streams contain high concentrations of heavy metals ions and radionuclides, which are extremely toxic and harmful to the environment, wildlife and humans. For the UK nuclear industry alone, it is estimated that there will be 4.9 million metric tonnes of radioactive waste by 2125, which contains a significant number of toxic radionuclides and heavy metals. This is exacerbated further by increased international growth of nuclear new build and decommissioning. Efforts to remove radionuclides have been focused on the development and optimisation of current separation and sequestering techniques as well as new technologies. Due to the large volumes of waste the techniques must be economical, simple to use and highly efficient in application. Magnetic nanoparticles (MNPs) offer a powerful enhancement of normal ion exchange materials in that they can be navigated to specific places using external magnetic fields and hence can be used to investigate challenges such as, pipework in preparation of decommissioning projects. They also have the potential to be fine-tuned to extract a variety of other radionuclides and toxic heavy metals. It has been demonstrated that with the right functional groups these particles become very strongly selective to radionuclides, such as Uranium. However, this new technology also has the potential to effectively aid nuclear waste remediation at a low cost for the separation of both radionuclides and heavy metals. In this work, we investigate the origin of the selectivity of superparamagnetic iron oxide nanoparticles (SPIONs) to Uranium by making systematic changes to the existing surface chemistry and determining how these changes influence the selectivity. Identifying the mechanism by which selected common nuclear related metals, such as Na(I), K(I), Cs(I), Ca(II), Cu(II), Co(II), Ni(II), Cd(II), Mg(II), Sr(II), Pb(II), Al(III), Mn(II), Eu(III) and Fe(III), are sorbed will allow for specific NP-target (nanoparticle) ion interactions to be revealed. Ultimately this understanding will provide guidance in the design of new targeted NP-ligand constructs for other environmental systems.
        2254.
        2023.05 서비스 종료(열람 제한)
        IAEA safety standards document and international programs (such as BIOMASS) related to the assessment of the biosphere around High Level Radioactive Waste (including Spent Nuclear Fuel) repositories require the assessment of the biosphere to use the assumption that the current natural environment and human society will be maintained, and at the same time, the evolution of the distant future changes also need to be taken into account. In Korea, which has not designated candidate disposal sites, it is necessary to investigate and predict the current state and future changes of the natural environment throughout Korea and apply it practically to Biosphere assessment (for BDCF derivation) for candidate disposal sites suitability assessment and Safety Case (for performance assessment) preparation for design, construction, operation, and post-closure management. To this end, the natural environment in the fields of Topography, Geology, Soil, Ecology, Weather and Climate, Animals and Plants, Hydrology, Ocean, Land-use, etc. and human society in the fields of Population Distribution, Spatial-Planning, Urban Form, Industrial-Structure, Lifestyle etc. are being investigated in the context of current status, past change records, and future change potential in the Korean Peninsula. This paper summarizes those investigations to date. This study referred Biomass-6 [IAEA] and National Atlas I (2019)/II (2020)/III (2021) [National Geographic Information Institute of the Korea Ministry of Land, Infrastructure and Transport].
        2255.
        2023.05 서비스 종료(열람 제한)
        The safe disposal of high-level radioactive waste is a critical concern in many countries, especially in the context of the increasing use of nuclear power to overcome climate change. To provide a comprehensive understanding of the behavior of the radionuclides in the crystalline natural barrier, sorption of the artificially synthesized high-level radioactive waste (HLW) leachate was conducted. Granite (-1,000 m from ground level) and biotite gneiss (-100 m from ground level) rock cores were collected from Gyeongju and Gwacheon, respectively. The rock cores were milled with a jaw crusher and steel disk mill and then sieved. The crushed rocks with a diameter of 0.6 – 1.0 mm were selected, washed three times with deionized water, and then dried. To synthesize the simulated HLW leachate, representative elements (U(VI), Se(IV), Mo(VI), and Ni(II)) were added to natural groundwater collected from Gyeongju. The kinetic sorption experiment was performed in a polypropylene bottle with a solid-to-liquid ratio of 100 g/L in the orbital shaking incubator (200 rotations per min, 25.0°C). After the sorption, the supernatants were filtered by a 0.2-μm polytetrafluoroethylene syringe filter and subsequently analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). Through the kinetic change of aqueous concentration, the contact time has been determined to be 7 days. Ni(II) showed the highest distribution coefficients (Kd = 0.81 L/m2 for granite and 8 – 16 L/m2 for biotite gneiss), followed by U(VI) (Kd = 0.03 – 0.04 L/m2 for granite and 0.04 – 0.05 L/m2 for biotite gneiss). Highly mobile nuclides such as Se(IV) (Kd = 0.02 L/m2 for granite and 0.03 L/m2 for biotite gneiss) and Mo(VI) (Kd = 0.01 – 0.02 L/m2 for granite and 0.01 L/m2 for biotite gneiss) showed the lowest distribution coefficient. Our study provides insights into the migration-retention behaviors of the HLW leachate with granite and biotite gneiss in geological systems and verifies the sorption parameters, e.g., distribution coefficients, experimentally produced by other groups to ensure the safe disposal of HLW.
        2256.
        2023.05 서비스 종료(열람 제한)
        When a loss of coolant accident which causes a partial or a full drainage in the SFP would happen, Zircaloy-4 spent fuel cladding begin to react with high temperature air, and the heat generates by exothermic reaction between Zircaloy-4 cladding and surrounding air. Due to the heat, the ignition may occur in the surface of Zircaloy-4 cladding. If the Zr-fire phenomenon occurs during the accident in a SFP, the spent fuel cladding and pellets would be severely fragmented and powdered and it may bring about a massive release of radioactive source terms. Therefore, it is crucial to prevent the zirconium fire phenomenon for the spent fuel pool safety. However, a main cause to trigger the zirconium fire was not identified. In order to identify a possible mechanism of the Zr-fire phenomenon, OECD-NEA SFP Project I, II was initiated. In this paper, we reviewed the Zr-fire phenomenon which may occur in the spent fuel pool for complete loss of coolant accident scenario. The Spent Fuel Pool Project (hereinafter SFP project) is the experimental program to investigate the phenomena of spent fuel pool complete loss of coolant accident using a 17×17 PWR fuel assembly. In this section, the zirconium fire phenomenon which was observed from the SFP project is briefly investigated. This paper presented the fuel assembly temperature (i.e. zirconium alloy cladding temperature) and oxygen concentration profile of the SFP project phase-1 ignition test. At around 12.7 hour, the temperature abruptly increased and the oxygen concentration also dramatically decreased. This abrupt temperature escalation is the zirconium fire phenomenon. In order to investigate the mechanism of this zirconium fire phenomenon, behaviors of both temperature and oxygen concentration were fully compared. This paper reviewed the results of OECD-NEA SFP project experiment and then a mechanism of Zr-fire phenomenon was dscussed. It seems that the Zr-fire phenomenon might be a consequence of thermal mismatch between heat generation and dissipation. A large amount of heat might be generated by the air oxidation of Zircaloy-4 spent cladding immediately after the kinetic transition which is a breakaway phenomenon. This paper discussed the relationship between the breakaway phenomenon and the Zr-fire phenomenon in case of air oxidation of Zircaloy-4 spent cladding. This paper presents preliminary findings on the Zr-fire phenomenon from the open experiment data of the prototypic spent fuel severe accident scenario. These findings would enhance the understanding of Zircaloy-4 spent cladding air oxidation and severe accident scenario progression in a SFP.
        2257.
        2023.05 서비스 종료(열람 제한)
        According to the “Law on protection and response measures for nuclear facilities and radiation”, Nuclear Power Plant (NPP) licensees should conduct periodic exercises based on hypothetical cyberattack scenarios, and there is a need to select significant and probable ones in a systematic manner. Since cyber-attacks are carried out intentionally, it is difficult to statistically specify the sequences, and it is not easy to systematically establish exercise scenarios because existing engineering safety facilities can be forcibly disabled. To deal with the above situation, this paper suggests a procedure using the Probabilistic Safety Assessment (PSA) model to develop a cybersecurity exercise scenario. The process for creating cyber security exercise scenarios consists of (i) selecting cyber-attack-causing initiating events, (ii) identifying digital systems, (iii) assigning cyber-attack vectors to a digital system, (iv) determining and adding type for operator’s response, (v) modifying a baseline PSA model, and (vi) extracting top-ranked minimal cut sets, and (vii) selecting a representative scenario. This procedure is described in detail through a case study, an expected cyber-attack scenario General Transient-Anticipated Transient Without Scram (GTRN-ATWS). It refers to an accident scenario for ATWS induced by GTRN. Since ATWS is targeted for cyber training in some NPPs, and GTRN is one of the most common accidents occurring in NPPs, GTRN-ATWS was chosen as an example. As for the cyber-attack vector, portable media and mobile devices were selected as examples based on expert judgment. In this paper, only brief examples of GTRN-ATWS events have been presented, but future studies will be conducted on an analysis of all initiating events in which cyber-attacks can occur.
        2258.
        2023.01 KCI 등재 서비스 종료(열람 제한)
        이 글에서는 T. S. 엘리엇(Eliot)의 「리틀 기딩」(“Little Gidding”)에 구 현되어 있는 시적 ‘논리’의 윤곽을 파악하고자 한다. 니콜라스 페라 (Nicholas Ferrar)의 종교적 공동체가 있었던 리틀 기딩에는 엘리엇이 자 의식을 가지고서 구축한, 고전주의자, 왕당파, 그리고 국교도로서의 정 체성이 새겨져 있다. 나아가서 그곳은 시간 속에 그리고 그와 동시에 시간 밖에 존재하며 성육신(the Incarnation)에서 인간의 속성과 신의 속 성이 만나듯 역사적이면서 동시에 초월적이라고 상상된다. 「리틀 기딩」 은 계절의 기적적인 교차(“한겨울의 봄”)를 앞세우며 시작하는데 이는 시 전체를 특징짓는 역설이며 수사와 주제의 차원에서 동시에 기능한 다. 제2차 세계대전의 시로서 「리틀 기딩」은 4원소의 죽음을 통하여 상 징적으로 묘사되는 인류문명의 몰락을 목도하지 않을 수 없지만 노리치 의 줄리안(Julian of Norwich)이 피력하는 기독교적 비전(“모두가 평안하 고 / 만물이 평안하리”)을 받아들이고 있다. 이 비전이 구현되는 것은 불과 장미의 상징이 하나가 될 때인데, 연옥의 시라고 할 수 있는 「리 틀 기딩」의 논지를 따르자면 이러한 하나됨은 극단적으로 철저한 자기 성찰과 정화를 통해서이다.
        2259.
        2022.11 KCI 등재 서비스 종료(열람 제한)
        To restore reclaimed land, it needs to be supplemented with organic matter; this is especially true for Korea, where organic matter constitutes only one-tenth of conventional agricultural soils. The giant Miscanthus, a perennial grass known for its extensive biomass, shows signs of being an excellent source of organic matter for restoring reclaimed land. Therefore, the objectives of this study were to (i) evaluate the feasibility of using the giant miscanthus as an organic resource within the context of re-using reclaimed land for agricultural purposes (i.e., potato cultivation), and (ii) determine the optimum fertilization rate for the potatoes while the giant miscanthus is being used as an organic resource. Our results show that after 180 days, giant miscanthus lost 23–47% of its original dry weight, with the extent of the loss dependent on soil salinity. Nutrient concentrations (Mg2+, Na+) continued to increase until the end of the study period. In contrast, potassium (K+) and the ratio of carbon to nitrogen (C/N) decreased until the end of the study period. Specifically, after 180 days, low salinity topsoil treatments had the lowest C/N ratio. In the first year, 150 % of standard N rates were required for the potatoes to achieve maximum productivity; however in the 2nd year, standard rates were sufficient to achieve maximum productivity. Overall, this implies that even though the application of giant miscanthus did eventually improve soil quality, increasing crop yields, N fertilization is still necessary for the best outcomes.
        2260.
        2022.10 서비스 종료(열람 제한)
        Medical cyclotrons have been used for dedicated medical of commercial applications such as positron emission tomography (PET) for the past tens of years. These cyclotron facilities have produced positron-emitting radionuclides (i.e. 11C, 13N, 15O, 18F, etc.). Among them, 18F, produced by 18O(p,n)18F reaction is the most widely used which has longer half-life (around 110 m) and lower energy of emitted positrons (around 0.63 MeV). Secondary neutrons produced during 18O(p,n)18F reaction could cause neutron activation of structures, systems, and components of cyclotron facilities. Therefore, International Atomic Energy Agency (IAEA) had addressed that during the operation of cyclotrons, concrete walls become radioactive over time and this radioactivity needs to be characterized for planning of the facility decommissioning. Moreover, several prior studies had estimated the neutron activation and levels of radioactivity of concrete wall of cyclotron facilities. Although those studies assessed the neutron activation of actual cyclotron facilities, however, the purpose of assessment was only for decommissioning each individual facility. Also, the assumptions, conditions or insights of conclusion may be limited to each individual case. For these reasons, this study focused on analysis of effects of major factors (e.g. concrete type, impurity contents of structural materials, etc.) about neutron activation of cyclotron facilities. In this study, the well-known methodology of neutron activation estimation was established and neutron activation products of concrete wall of cyclotron vault was calculated. Also, sensitivity analyses were conducted to figure out the effects of major factors of neutron activation and production of radioactive wastes during decommissioning of the facility. The methodology and results were validated by two steps: comparing with prior studies and comparing with another computer code. Concrete type did not affect that the decision of level of radioactivity waste criteria. Because of relatively longer half-lives, impurity contents of structural materials especially Co and Eu were turned out one of the most important factors for planning the facility decommissioning. It is hard to simply figure out the radioactivity levels of cyclotron facilities, however, rough predictions of minimum period for decay-in-storage as radioactive waste management can be possible with using information of thermal neutron spectra and major impurity nuclides (e.g. 59Co, 151Eu and 153Eu) for minimization of radioactive waste production and relief of charge of radioactive waste management.